Pure Appl. Chem., 2010, Vol. 82, No. 11, pp. 1993-2003
http://dx.doi.org/10.1351/PAC-CON-09-12-17
Published online 2010-08-27
Homeotropic alignment through charge-transfer-induced columnar mesophase formation in an unsymmetrically substituted triphenylene derivative
References
- 1. F. . Monatsch. Chem. 9, 421 (1888). (http://dx.doi.org/10.1007/BF01516710)
 - 2. S. , B. K. Sadashiva, K. A. Suresh. Pramana 9, 471 (1977). (http://dx.doi.org/10.1007/BF02846252)
 - 3. A. N. Cammidge, R. J. Bushby. In Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess (Eds.), Chap. VII, Wiley-VCH, New York (1998).
 - 4. R. J. , O. R. Lozman. Curr. Opin. Colloid Interface Sci. 7, 343 (2002). (http://dx.doi.org/10.1016/S1359-0294(02)00085-7)
 - 5. A. N. . Philos. Trans. R. Soc. London, Ser. A 364, 2697 (2006).
 - 6. S. . Chem. Soc. Rev. 35, 83 (2006). (http://dx.doi.org/10.1039/b506619k)
 - 7. S. , W. Pisula, Y. H. Geerts. Chem. Soc. Rev. 36, 1902 (2007). (http://dx.doi.org/10.1039/b417320c)
 - 8. S. , A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni. Angew. Chem., Int. Ed. Engl. 46, 4832 (2007). (http://dx.doi.org/10.1002/anie.200604203)
 - 9. S. . Liq. Cryst. 36, 607 (2009). (http://dx.doi.org/10.1080/02678290902755549)
 - 10. H. K. , S. Kumar. Chem. Soc. Rev. 39, 264 (2010). (http://dx.doi.org/10.1039/b901792p)
 - 11. N. B. McKeown. Phthalocyanine Materials, Synthesis, Structure and Function, Cambridge University Press, Cambridge (1998).
 - 12. S. . Liq. Cryst. 31, 1037 (2004). (http://dx.doi.org/10.1080/02678290410001724746)
 - 13. D. , E. Guitián. Chem. Soc. Rev. 33, 274 (2004). (http://dx.doi.org/10.1039/b305549n)
 - 14. S. . Liq. Cryst. 32, 1089 (2005). (http://dx.doi.org/10.1080/02678290500117415)
 - 15. J. , W. Pisula, K. Müllen. Chem. Rev. 107, 718 (2007). (http://dx.doi.org/10.1021/cr068010r)
 - 16a. S. , S. K. Prasad. Contemp. Phys. 40, 237 (1999).
 - 16b. H. . J. Porphyrins Phthalocyanines 4, 88 (2000). (http://dx.doi.org/10.1002/(SICI)1099-1409(200001/02)4:1<88::AID-JPP208>3.0.CO;2-6)
 - 16c. W. , M. Zorn, J. Y. Chang, K. Müllen, R. Zentel. Macromol. Rapid Commun. 30, 1179 (2009). (http://dx.doi.org/10.1002/marc.200900251)
 - 17a. V. , C. H. Ahn, G. Ungar, D. J. P. Yeardley, M. Möller, S. S. Sheiko. Nature 391, 161 (1998). (http://dx.doi.org/10.1038/34384)
 - 17b. V. S. K. , G. Ungar, V. Percec, G. Johansson. J. Am. Chem. Soc. 119, 1539 (1997). (http://dx.doi.org/10.1021/ja963295i)
 - 17c. D. J. , J. S. Moore. Angew. Chem., Int. Ed. Engl. 36, 1636 (1997). (http://dx.doi.org/10.1002/anie.199716361)
 - 18. J. , B. Donnio, L. Gehringer, D. Guillon, M. Marcos, A. Omenat, J. L. Serrano. J. Mater. Chem. 15, 4093 (2005). (http://dx.doi.org/10.1039/b502464a)
 - 19. B. , T. M. Swager. J. Am. Chem. Soc. 115, 1159 (1993). (http://dx.doi.org/10.1021/ja00056a056)
 - 20a. V. , G. Zipp, G. Johansson, U. Beginn, M. Moller. Macromol. Chem. Phys. 198, 265 (1997). (http://dx.doi.org/10.1002/macp.1997.021980204)
 - 20b. A. , S. Laschat, A. Saipa, F. Gießelmann, M. Nimtz, J. L. Schulte, A. Baro, B. Miehlich. Adv. Funct. Mater. 14, 163 (2004). (http://dx.doi.org/10.1002/adfm.200304463)
 - 21. J. , Z. He, H. Gopee, A. N. Cammidge. Org. Lett. 12, 472 (2010). (http://dx.doi.org/10.1021/ol902637z)
 - 22. P. H. , O. van den Berg, W. F. Jager, W. J. Mijs, S. J. Picken. Macromolecules 35, 2576 (2002). (http://dx.doi.org/10.1021/ma011628c)
 - 23. D. , G. Pelzl, N. K. Sharma, W. Weissflog. Mol. Cryst. Liq. Cryst. 76, 241 (1981). (http://dx.doi.org/10.1080/00268948108076157)
 - 24. D. . J. Mater. Chem. 8, 265 (1998). (http://dx.doi.org/10.1039/a704902a)
 - 25. K. , P. Marquardt, B. Kohne, W. Stephan, A. M. Levelut, E. Wachtel. Mol. Cryst. Liq. Cryst. 203, 149 (1991). (http://dx.doi.org/10.1080/00268949108046054)
 - 26. N. , R. J. Bushby, Z. Lu, O. R. Lozman. Liq. Cryst. 28, 657 (2001). (http://dx.doi.org/10.1080/02678290010026304)
 - 27. L. Y. , J. P. Stokes, C. R. Safinya, A. N. Bloch. Mol. Cryst. Liq. Cryst. 125, 279 (1985). (http://dx.doi.org/10.1080/00268948508080107)
 - 28. H. , H. Bengs, O. Karthaus, R. Wüstefeld, M. Ebert, J. H. Wendorff, B. Kohne, K. Praefcke. Adv. Mater. 2, 141 (1990). (http://dx.doi.org/10.1002/adma.19900020306)
 - 29. H. , R. Wüstefeld, E. Zerta, M. Ebert, J. H. Wendorff. Angew. Chem., Int. Ed. Engl. 28, 914 (1989). (http://dx.doi.org/10.1002/anie.198909141)
 - 30. H. , O. Karthaus, H. Ringsdorf, C. Baehr, M. Ebert, J. H. Wendorff. Liq. Cryst. 10, 161 (1991). (http://dx.doi.org/10.1080/02678299108036422)
 - 31. W. , B. Glusen, A. Kettner, M. Wittenberg, J. H. Wendorff. Liq. Cryst. 23, 569 (1997).
 - 32. K. , D. Singer, B. Kohne, M. Ebert, A. Liebmann, J. H. Wendorff. Liq. Cryst. 10, 147 (1991). (http://dx.doi.org/10.1080/02678299108036421)
 - 33. K. , D. Singer, M. Langner, B. Kohne, M. Ebert, A. Liebmann, J. H. Wendorff. Mol. Cryst. Liq. Cryst. 215, 121 (1992). (http://dx.doi.org/10.1080/10587259208038516)
 - 34. L. , H. Zimmermann, E. J. Wachtel, R. Poupko, Z. Luz. Liq. Cryst. 22, 621 (1997). (http://dx.doi.org/10.1080/026782997209036)
 - 35a. C. A. , J. K. M. Sanders. J. Am. Chem. Soc. 112, 5525 (1990). (http://dx.doi.org/10.1021/ja00170a016)
 - 35b. C. A. . Angew. Chem., Int. Ed. Engl. 32, 1584 (1993). (http://dx.doi.org/10.1002/anie.199315841)
 - 36. E. O. , N. Boden, R. J. Bushby, O. R. Lozman, J. G. Vinter, A. Wood. Angew. Chem., Int. Ed. 39, 2333 (2000). (http://dx.doi.org/10.1002/1521-3773(20000703)39:13<2333::AID-ANIE2333>3.0.CO;2-V)
 - 37. N. , R. J. Bushby, O. R. Lozman. Mol. Cryst. Liq. Cryst. 411, 345 (2004). (http://dx.doi.org/10.1080/15421400490435378)
 - 38. A. M. , N. Stutzmann, O. Bunk, M. M. Nielsen, M. D. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus, R. H. Friend. Adv. Mater. 15, 495 (2003). (http://dx.doi.org/10.1002/adma.200390114)
 - 39a. L. , A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend, J. D. MacKenzie. Science 293, 1119 (2001). (http://dx.doi.org/10.1126/science.293.5532.1119)
 - 39b. J. P. , R. H. Friend, M. Kastler, K. Müllen. J. Chem. Phys. 124, 174704 (2006). (http://dx.doi.org/10.1063/1.2194536)
 - 40a. J. H. , T. Christ, B. Glusen, A. Greiner, A. Kettner, R. Sander, V. Stumpflen, V. Tsukruk. Adv. Mater. 9, 48 (1997). (http://dx.doi.org/ 10.1002/adma.19970090110)
 - 40b. H. , Z. He, J. Wang, C. Zhang, P. Xie, R. Zhang. J. Lumin. 122–123, 942 (2007). (http://dx.doi.org/10.1016/j.jlumin.2006.01.333)
 - 41. H.-T. , S. O. Kim, Y. K. Ko, D. K. Yoon, S. D. Hudson, V. Percec, M. N. Holerca, W.-D. Cho, P. E. Mosier. Macromolecules 35, 3717 (2002). (http://dx.doi.org/10.1021/ma010587h)
 - 42. H. , K. Weiss, M. Grunze, C. Wöll. Appl. Phys. A 65, 231 (1997). (http://dx.doi.org/10.1007/s003390050571)
 - 43. J. C. , N. B. Larsen, N. Harrit, J. S. Pedersen, K. Schaumburg, K. Bechgaard. Langmuir 12, 1690 (1996). (http://dx.doi.org/10.1021/la9507794)
 - 44. A. N. , H. Gopee. J. Mater. Chem. 11, 2773 (2001). (http://dx.doi.org/10.1039/b103450m)
 - 45. N. , H. Monobe, K. Kiyohara, Y. Shimizu. Chem. Commun. 1678 (2003). (http://dx.doi.org/10.1039/b304512a)
 - 46. V. , M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H.-W. Spiess, S.-D. Hudson, H. Duan. Nature 417, 384 (2002). (http://dx.doi.org/10.1038/nature01072)
 - 47. C. , A. Zann, P. Le Barny, J. C. Dubois, J. Billard. Mol. Cryst. Liq. Cryst. 66, 103 (1981). (http://dx.doi.org/10.1080/00268948108072663)
 - 48. K. . Chem. Rec. 2, 59 (2002). (http://dx.doi.org/10.1002/tcr.10015)
 - 49. D. , F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf, P. Schuhmacher, K. Siemensmeyer. Phys. Rev. Lett. 70, 457 (1993). (http://dx.doi.org/10.1103/PhysRevLett.70.457)
 - 50. R. I. , D. V. Anokhin, A. I. Bondar, W. Bras, M. Jahr, M. Lehmann, D. A. Ivanov. Adv. Mater. 19, 815 (2007). (http://dx.doi.org/10.1002/adma.200602460)
 - 51. M. , S. Zimmermann, P. Göring, A. K. Schaper, U. Gösele, C. Weder, J. H. Wendorff. Nano Lett. 5, 429 (2005). (http://dx.doi.org/10.1021/nl0481728)
 - 52. S. H. , A. Adavelli, H. S. Li, N. Fox. Mol. Cryst. Liq. Cryst. 397, 347 (2003). (http://dx.doi.org/10.1080/714965596)
 - 53. I. O. , P. Jonkheijm, N. Stutzmann, D. Wasserberg, H. J. Wondergem, P. C. M. Christianen, A. P. H. J. Schenning, D. M. de Leeuw, ?. Tomovi?, J. Wu, K. Müllen, J. C. Maan. J. Am. Chem. Soc. 127, 16233 (2005). (http://dx.doi.org/10.1021/ja054694t)
 - 54. S. , D. Janietz, M. Kidowaki, M. Nakagawa, S. Morino, J. Stumpe, K. Ichimura. Chem. Mater. 13, 1434 (2001). (http://dx.doi.org/10.1021/cm000919h)
 - 55a. H. , K. Kiyohara, N. Terasawa, M. Heya, K. Awazu, Y. Shimizu. Thin Solid Films 438–439, 418 (2003). (http://dx.doi.org/10.1016/S0040-6090(03)00795-8)
 - 55b. H. , N. Terasawa, Y. Shimizu, K. Kiyohara, M. Heya, K. Awazu. Mol. Cryst. Liq. Cryst. 443, 211 (2005). (http://dx.doi.org/10.1080/15421400500248977)
 - 56. H. , H. Hori, M. Heya, K. Awazu, Y. Shimizu. Thin Solid Films 499, 259 (2006). (http://dx.doi.org/10.1016/j.tsf.2005.06.083)
 - 57. E. , E. Grelet, P. Brettes, H. Bock, H. Saadaoui, L. Cisse, P. Destruel, N. Gherardi, I. Seguy. Appl. Phys. Lett. 92, 024107 (2008). (http://dx.doi.org/10.1063/1.2831009)
 - 58. J. , Z. He, Y. Zhang, H. Zhao, C. Zhang, X. Kong, L. Mu, C. Liang. Thin Solid Films 518, 1973 (2010). (http://dx.doi.org/10.1016/j.tsf.2009.07.057)
 - 59. G. , G. Gbabode, F. Quist, O. Debever, N. Dumont, S. Sergeyev, Y. H. Geerts. Chem. Mater. 21, 5867 (2009). (http://dx.doi.org/10.1021/cm902634r)
 - 60a. N. , R. C. Borner, R. J. Bushby, A. N. Cammidge, M. V. Jesudason. Liq. Cryst. 15, 851 (1993). (http://dx.doi.org/10.1080/02678299308036504)
 - 60b. N. , R. J. Bushby, A. N. Cammidge. J. Chem. Soc., Chem. Commun. 465 (1994). (http://dx.doi.org/10.1039/c39940000465)
 - 60c. N. , R. J. Bushby, A. N. Cammidge. J. Am. Chem. Soc. 117, 924 (1995). (http://dx.doi.org/10.1021/ja00108a009)
 - 61. W. , H. Monobe, Y. Tanaka, Y. Shimizu. Liq. Cryst. 30, 571 (2003). (http://dx.doi.org/10.1080/0267829031000099608)
 - 62. 1H NMR (CDCl3, TMS, 400 MHz): δH 7.91(2H, s, ArH-5,12), 7.83 (4H, d, J = 3.1 Hz, ArH-1,4,8,9), 4.42 (4H, t, J = 4.5 Hz, ArOCH2CH2OCH2CH2Cl), 4.21–4.25 (12H, m, OCH2(CH2)4CH3), 4.02 (4H, t, J = 4.7 Hz, ArOCH2CH2OCH2CH2Cl), 3.92 (4H, t, J = 5.8 Hz, ArO(CH2)2OCH2CH2Cl), 3.71 (4H, t, J = 5.8 Hz, ArOCH2CH2OCH2CH2Cl), 1.98-1.91 (8H, m, OCH2CH2), 1.39–1.59 (24H, m, O(CH2)2(CH2)3CH3), 0.94 (12H, t, J = 7.1 Hz, CH3); 13C NMR (CDCl3; 75.45 MHz): δC 149.3, 148.6, 124.4, 123.8, 123.6, 108.7, 107.5, 107.3,70.5, 71.8, 70.2, 69.9, 69.8, 69.5, 43.1, 31.9, 29.6, 26.0, 22.9, 14.3; elemental analysis for C50H74O8Cl: required C 68.71, H 8.53; found C 68.45, H 8.49; mass spectrum (m/z, ES) measured 895.5 ([M + Na]+, 100 %).
 - 63. G. , A. Kocot, R. Wrzalik, J. K. Vij. Liq. Cryst. 14, 807 (1993). (http://dx.doi.org/10.1080/02678299308027757)
 - 64. O. , M. Orchin. Org. Synth., Coll. 3, 837 (1955).
 - 65a. K. , J. D. Holbrey. J. Inclusion Phenom. Mol. Recognit. Chem. 24, 19 (1996). (http://dx.doi.org/10.1007/BF01053424)
 - 65b. M. , G. Frick, C. Baehr, J. H. Wendorff, R. Wüstefeld, H. Ringsdorf. Liq. Cryst. 11, 293 (1992). (http://dx.doi.org/10.1080/02678299208028989)
 - 66. E. O. , N. Boden, R. J. Bushby, J. Clements, B. Movaghar, A. Wood. J. Mater. Chem. 5, 2161 (1995). (http://dx.doi.org/10.1039/jm9950502161)
 
