Pure Appl. Chem., 2010, Vol. 82, No. 3, pp. 603-612
http://dx.doi.org/10.1351/PAC-CON-09-08-02
Published online 2010-02-24
Synthesis and structure of stable 1,2-diaryldisilyne
References
- 1a. For recent reviews, see: P. P. . Chem. Rev. 99, 3463 (1999). (http://dx.doi.org/10.1021/cr9408989)
 - 1b. N. , R. Okazaki. Coord. Chem. Rev. 210, 251 (2000). (http://dx.doi.org/10.1016/S0010-8545(00)00313-1)
 - 1c. M. , T. Iwamoto. J. Organomet. Chem. 611, 236 (2000). (http://dx.doi.org/10.1016/S0022-328X(00)00439-3)
 - 1d. P. . Angew. Chem., Int. Ed. 39, 3797 (2000). (http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3797::AID-ANIE3797>3.0.CO;2-8)
 - 1e. N. , R. Okazaki. Adv. Organomet. Chem. 47, 121 (2001). (http://dx.doi.org/10.1016/S0065-3055(01)47011-0)
 - 1f. M. . J. Organomet. Chem. 646, 39 (2002). (http://dx.doi.org/10.1016/S0022-328X(01)01262-1)
 - 1g. M. . Organometallics 22, 4348 (2003). (http://dx.doi.org/10.1021/om034085z)
 - 1h. V. Y. , A. Sekiguchi. Organometallics 23, 2822 (2004). (http://dx.doi.org/10.1021/om040027h)
 - 1i. T. Sasamori, N. Tokitoh. In Encyclopedia of Inorganic Chemistry, 2nd ed., R. B. King (Ed.), p. 1698, John Wiley, Chichester (2005).
 - 1j. M. , T. Iwamoto. Adv. Organomet. Chem. 54, 73 (2006). (http://dx.doi.org/10.1016/S0065-3055(05)54003-6)
 - 2a. P. J. , M. F. Lappert. J. Chem. Soc., Chem. Commun. 317a (1973). (http://dx.doi.org/10.1039/c3973000317a)
 - 2b. P. J. , D. H. Harris, M. F. Lappert. J. Chem. Soc., Dalton Trans. 2268 (1976). (http://dx.doi.org/10.1039/dt9760002268)
 - 2c. D. E. , D. H. Harris, M. F. Lappert, K. M. Thomas. J. Chem. Soc., Chem. Commun. 261 (1976). (http://dx.doi.org/10.1039/c39760000261)
 - 2d. D. E. , P. B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland, B. E. R. Schilling. J. Chem. Soc., Dalton Trans. 2387 (1986). (http://dx.doi.org/10.1039/dt9860002387)
 - 3. R. , M. J. Fink, J. Michl. Science 214, 1343 (1981). (http://dx.doi.org/10.1126/science.214.4527.1343)
 - 4a. For recent reviews, see: P. P. . Chem. Commun. 2091 (2003). (http://dx.doi.org/10.1039/b212224c)
 - 4b. M. . Angew. Chem., Int. Ed. 44, 514 (2005). (http://dx.doi.org/10.1002/anie.200462273)
 - 4c. A. , M. Ichinohe, R. Kinjo. Bull. Chem. Soc. Jpn. 79, 825 (2006). (http://dx.doi.org/10.1246/bcsj.79.825)
 - 4d. E. , P. P. Power. Inorg. Chem. 46, 10047 (2007). (http://dx.doi.org/10.1021/ic700813h)
 - 4e. P. P. . Organometallics 26, 4362 (2007). (http://dx.doi.org/10.1021/om700365p)
 - 4f. A. . Pure Appl. Chem. 80, 447 (2008). (http://dx.doi.org/10.1351/pac200880030447)
 - 5. M. , A. D. Phillips, R. J. Wright, P. P. Power. Angew. Chem., Int. Ed. 41, 1785 (2002). (http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6)
 - 6a. A. D. , R. J. Wright, M. M. Olmstead, P. P. Power. J. Am. Chem. Soc. 124, 5930 (2002). (http://dx.doi.org/10.1021/ja0257164)
 - 6b. R. C. , L. H. Pu, J. C. Fettinger, M. A. Brynda, P. P. Power. J. Am. Chem. Soc. 128, 11366 (2006). (http://dx.doi.org/10.1021/ja0637090)
 - 7. L. H. , B. Twamley, P. P. Power. J. Am. Chem. Soc. 122, 3524 (2000). (http://dx.doi.org/10.1021/ja993346m)
 - 8. C. M. , M. M. Olmstead, J. C. Fettinger, G. H. Spikes, P. P. Power. J. Am. Chem. Soc. 127, 17530 (2005). (http://dx.doi.org/10.1021/ja055372s)
 - 9a. N. , S. Nagase. Organometallics 26, 3627 (2007). (http://dx.doi.org/10.1021/om700388b)
 - 9b. N. , S. Nagase. Organometallics 26, 469 (2007). (http://dx.doi.org/10.1021/om060993v)
 - 10. R. , R. West, D. R. Powell. Organometallics 19, 2724 (2000). (http://dx.doi.org/10.1021/om990924z)
 - 11. N. , S. K. Vasisht, G. Fischer, P. Mayer. Z. Anorg. Allg. Chem. 630, 1823 (2004). (http://dx.doi.org/10.1002/zaac.200400177)
 - 12. A. , R. Kinjyo, M. Ichinohe. Science 305, 1755 (2004). (http://dx.doi.org/10.1126/science.1102209)
 - 13a. K. , S. Nagase. Organometallics 16, 2489 (1997). (http://dx.doi.org/10.1021/om970232f)
 - 13b. S. , K. Kobayashi, N. Takagi. J. Organomet. Chem. 611, 264 (2000). (http://dx.doi.org/10.1016/S0022-328X(00)00489-7)
 - 13c. N. , S. Nagase. Eur. J. Inorg. Chem. 2775 (2002). (http://dx.doi.org/10.1002/1099-0682(200211)2002:11<2775::AID-EJIC2775>3.0.CO;2-D)
 - 14. T. , K. Hironaka, Y. Sugiyama, N. Takagi, S. Nagase, Y. Hosoi, Y. Furukawa, N. Tokitoh. J. Am. Chem. Soc. 130, 13856 (2008). (http://dx.doi.org/10.1021/ja8061002)
 - 15. Y. , T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh. J. Am. Chem. Soc. 128, 1023 (2006). (http://dx.doi.org/10.1021/ja057205y)
 - 16. When THF was used as a solvent, disilyne 1 was obtained with an unidentified side product that was difficult to separate. No such side product was observed with the THF/Et2O mixed solvent system.
 - 17. M. , Y. Apeloig, N. Takagi, S. Nagase. Organometallics 24, 6319 (2005). (http://dx.doi.org/10.1021/om058033g)
 - 18. NMR spectral data of 5: 1H NMR (300 MHz, C6D6): δ 0.23 (s, 18H), 0.32 (s, 18H), 0.36 (s, 18H), 0.36 (s, 54H), 0.43 (s, 18H), 1.97 (s, 2H), 5.93 (s, 2H), 6.95 (d, 4JHH = 1.8 Hz, 2H), 7.00 (d, 4JHH = 1.8 Hz, 2H); 13C NMR (75 MHz, C6D6): δ 1.05 (q), 1.52 (q), 1.60 (q), 2.28 (q), 5.13 (q), 22.73 (s), 24.39 (d), 29.63 (d), 124.57 (d), 128.01 (d), 133.62 (s), 148.12 (s), 148.38 (s), 157.26 (s); 29Si NMR (59 MHz, C6D6): δ –25.1, 0.76, 0.99, 1.05, 1.59, 3.59.
 - 19. Crystal data for [1_2C7H8]: C74H150Si16, M = 1489.38, T = 103 (2) K, tetragonal, P42212 (no. 94), 0.10 ? 0.05 ? 0.02 mm3, a = b = 16.6701(4) Å, c = 33.7498(11) Å, V = 9378.8(4) Å3, Z = 4, Dcalc = 1.055 g_cm–3, μ = 0.252 mm–1, 2θmax = 50.0, 70 378 measured reflections, 8253 independent reflections (Rint = 0.1966), 446 refined parameters, GOF = 1.026, R1 = 0.0723 and wR2 = 0.1497 [I > 2σ(I)], R1 = 0. 1762 and wR2 = 0.2028 (for all data), largest diff. peak and hole 0.401 and –0.574 e.Å–3.
 - 20. N. , S. Nagase. J. Organomet. Chem. 692, 217 (2007). (http://dx.doi.org/10.1016/j.jorganchem.2006.08.089)
 - 21. Frequency calculations were not performed at this stage because of the huge cost for computations.
 - 22. Numerous reports describe theoretical studies of a disilyne and related compounds. For recent examples, see.
 - 22a. M. , K. Sakamoto. J. Phys. Chem. A 108, 5710 (2004). (http://dx.doi.org/10.1021/jp049047n)
 - 22b. A. J. , L. R. Ireland. Polyhedron 20, 2841 (2001). (http://dx.doi.org/10.1016/S0277-5387(01)00896-8)
 - 23. Theoretical calculations for BbtGe?GeBbt (6) were performed at the B3PW91/6-311+G(2df)[Ge]: 6-31G(d)[Si,C,H] level. Although the basis sets for Si atoms of the substituents differ between the calculations for BbtGe?GeBbt and those for BbtSi?SiBbt, these results and discussions are reliable as a qualitative investigation.
 - 24. A. B. , M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers. Organometallics 15, 1518 (1996). (http://dx.doi.org/10.1021/om9503712)
 
