Pure Appl. Chem., 2010, Vol. 82, No. 4, pp. 891-904
http://dx.doi.org/10.1351/PAC-CON-09-09-04
Published online 2010-03-13
Toward carbyne: Synthesis and stability of really long polyynes
References
- 1. E. H. L. , F. Wudl. J. Chem. Technol. Biotechnol. 82, 524 (2007). (http://dx.doi.org/10.1002/jctb.1693)
 - 2. R. B. Heimann, S. E. Evsyukov, L. Kavan (Eds.). Carbyne and Carbynoid Structures, Springer, Berlin (1999).
 - 3. F. Cataldo (Ed.). Polyynes: Synthesis, Properies, and Applications, Taylor & Francis, Boca Raton (2006).
 - 4. P. P. K. , P. R. Buseck. Science 216, 984 (1982). (http://dx.doi.org/10.1126/science.216.4549.984)
 - 5. R. J. , J. J. Kampa, H.-C. Wei, S. L. Battle, J. W. Gegne, D. A. Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw, E. Munson. Science 267, 362 (1995). (http://dx.doi.org/10.1126/science.267.5196.362)
 - 6. K. Müllen, G. Wegner (Eds.). Electronic Materials: The Oligomer Approach, Wiley-VCH, Weinheim (1998).
 - 7. R. E. , F. Diederich. Angew. Chem., Int. Ed. 38, 1350 (1999). (http://dx.doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6)
 - 8. F. . Chem. Ber. 86, 657 (1953). (http://dx.doi.org/10.1002/cber.19530860519)
 - 9. E. R. H. , H. H. Lee, M. C. Whiting. J. Chem. Soc. 3483 (1960). (http://dx.doi.org/10.1039/jr9600003483)
 - 10. T. R. , D. R. M. Walton. Tetrahedron 28, 5221 (1972). (http://dx.doi.org/10.1016/S0040-4020(01)88941-9)
 - 11. R. , T. R. Johnson, D. R. M. Walton. Tetrahedron 28, 4601 (1972). (http://dx.doi.org/10.1016/0040-4020(72)80041-3)
 - 12. S. M. E. , M. D. Weller, L. R. Cox. Chem. Commun. 4035 (2007). (http://dx.doi.org/10.1039/b707681a)
 - 13. W. A. , R. R. Tykwinski. C.R. Chim. 12, 341 (2009).
 - 14. Y. Tobe, T. Wakabayashi. In Acetylene Chemistry: Chemistry, Biology, and Material Science, F. Diederich, P. J. Stang, R. R. Tykwinski (Eds.), Chap. 9, Wiley-VCH, Weinheim, Germany (2005).
 - 15. W. A. , R. R. Tykwinski. Chem. Rec. 6, 169 (2006). (http://dx.doi.org/10.1002/tcr.20081)
 - 16. W. , J. Stahl, F. Hampel, J. A. Gladysz. Chem.—Eur. J. 9, 3324 (2003). (http://dx.doi.org/10.1002/chem.200204741)
 - 17. Q. , J. A. Gladysz. J. Am. Chem. Soc. 127, 10508 (2005). (http://dx.doi.org/10.1021/ja0534598)
 - 18. Q. , J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel, J. A. Gladysz. Chem.—Eur. J. 12, 6486 (2006). (http://dx.doi.org/10.1002/chem.200600615)
 - 19. M. , G. T. Dalton, J. A. Gladysz, Q. Zheng, Y. Velkov, H. Ågren, P. Norman, M. G. Humphrey. Inorg. Chem. 47, 9946 (2008). (http://dx.doi.org/10.1021/ic801145c)
 - 20a. P. . Liebigs Ann. Chem. 279, 319 (1894).
 - 20b. W. P. . Liebigs Ann. Chem. 279, 324 (1894).
 - 20c. H. . Liebigs Ann. Chem. 279, 337 (1894).
 - 21a. For reviews, see: R. . Chem. Rev. 104, 3795 (2004). (http://dx.doi.org/10.1021/cr030616h)
 - 21b. W. . Angew. Chem., Int. Ed. 36, 1164 (1997).
 - 21c. P. J. . Chem. Rev. 78, 383 (1978). (http://dx.doi.org/10.1021/cr60314a003)
 - 22a. For recent examples of polyyne syntheses using the FBW rearrangement, see: P. , W. A. Chalifoux, S. Eisler, A. L. K. Shi Shun, E. T. Chernick, R. R. Tykwinski. Org. Lett. 11, 519 (2009). (http://dx.doi.org/10.1021/ol8023665)
 - 22b. M. . Synlett 159 (2009).
 - 22c. A. , T. Luu, Y. Zhao, R. McDonald, R. R. Tykwinski. Org. Lett. 10, 609 (2008). (http://dx.doi.org/10.1021/ol702898a)
 - 22d. J. , R. McDonald, M. J. Ferguson, R. R. Tykwinski. Org. Lett. 10, 2163 (2008). (http://dx.doi.org/10.1021/ol800583r)
 - 22e. T. , Y. Morisaki, N. Cunningham, R. R. Tykwinski. J. Org. Chem. 72, 9622 (2007). (http://dx.doi.org/10.1021/jo701810g)
 - 22f. Y. , R. Umeda, N. Iwasa, M. Sonoda. Chem.—Eur. J. 9, 5549 (2003). (http://dx.doi.org/10.1002/chem.200305051)
 - 23. A. D. , F. A. Hegmann, S. Eisler, E. Elliott, R. R. Tykwinski. J. Chem. Phys. 120, 6807 (2004). (http://dx.doi.org/10.1063/1.1707011)
 - 24. S. , A. D. Slepkov, E. Elliott, T. Luu, R. McDonald, F. A. Hegmann, R. R. Tykwinski. J. Am. Chem. Soc. 127, 2666 (2005). (http://dx.doi.org/10.1021/ja044526l)
 - 25. A. , M. Tommasini, D. Fazzi, M. Del Zoppo, W. A. Chalifoux, M. J. Ferguson, G. Zerbi, R. R. Tykwinski. J. Am. Chem. Soc. 131, 4239 (2009). (http://dx.doi.org/10.1021/ja078198b)
 - 26. W. A. , R. McDonald, M. J. Ferguson, R. R. Tykwinski. Angew. Chem., Int. Ed. 48, 7915 (2009). (http://dx.doi.org/10.1002/anie.200902760)
 - 27. S. , R. R. Tykwinski. J. Am. Chem. Soc. 122, 10736 (2000). (http://dx.doi.org/10.1021/ja005557t)
 - 28. J.-H. , Y. Liang, Y.-X. Xie. J. Org. Chem. 70, 4393 (2005). (http://dx.doi.org/10.1021/jo0503310)
 - 29. A. L. K. , E. T. Chernick, S. Eisler, R. R. Tykwinski. J. Org. Chem. 68, 1339 (2003). (http://dx.doi.org/10.1021/jo026481h)
 - 30. S. , N. Chahal, R. McDonald, R. R. Tykwinski. Chem.—Eur. J. 9, 2542 (2003). (http://dx.doi.org/10.1002/chem.200204584)
 - 31a. F. , N. B. Desai, N. McKelvie. J. Am. Chem. Soc. 84, 1745 (1962).
 - 31b. E. J. , P. L. Fuchs. Tetrahedron Lett. 13, 3769 (1972). (http://dx.doi.org/10.1016/S0040-4039(01)94157-7)
 - 32a. C. , R. Delange. Bull. Soc. Chim. Fr. 648 (1903).
 - 32b. G. H. , M. C. Whiting. J. Chem. Soc. 4761 (1956). (http://dx.doi.org/10.1039/jr9560004761)
 - 32c. R. , C. Pires, C. Behringer, T. Menke, J. Freudenreich, E. C. Rossmann, P. Böhrer. J. Am. Chem. Soc. 128, 14845 (2006). (http://dx.doi.org/10.1021/ja0649116)
 - 33. D. R. M. , F. Waugh. J. Organomet. Chem. 37, 45 (1972). (http://dx.doi.org/10.1016/S0022-328X(00)89260-8)
 - 34. A. S. . J. Org. Chem. 27, 3320 (1962). (http://dx.doi.org/10.1021/jo01056a511)
 - 35. T. , F. Hampel, J.-P. Gisselbrecht, A. Hirsch. Chem.—Eur. J. 8, 408 (2002). (http://dx.doi.org/10.1002/1521-3765(20020118)8:2<408::AID-CHEM408>3.0.CO;2-L)
 - 36. G. , A. R. Galbraith. Chem. Ind. (London) 7378 (1956).
 - 37. F. , M. Brehm. Chem. Ber. 112, 1071 (1979). (http://dx.doi.org/10.1002/cber.19791120330)
 - 38. C. Bubeck. In Electronic Materials: The Oligomer Approach, K. Müllen, G. Wegner (Eds.), Chap. 8, Wiley-VCH, Weinheim (1998).
 - 39. Y. , P. Norman, K. Ruud, H. Ågren. Chem. Phys. Lett. 285, 160 (1998). (http://dx.doi.org/10.1016/S0009-2614(98)00026-8)
 - 40. A. , K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, C. Bubeck. Phys. Rev. B 53, 4367 (1996). (http://dx.doi.org/10.1103/PhysRevB.53.4367)
 - 41. In each case, R2 ≥ 0.9996.
 - 42. G. N. , M. Calvin. Chem. Rev. 25, 273 (1939). (http://dx.doi.org/10.1021/cr60081a004)
 - 43a. For examples of analysis of polyyne HOMO-LUMO gaps using the Lewis–Calvin approach, see refs. [10,11,24].
 - 43b. J. B. , N. Entwistle, E. R. H. Jones, M. C. Whiting. J. Chem. Soc. 147 (1954). (http://dx.doi.org/10.1039/jr9540000147)
 - 43c. G. , T. Grösser, F. Hampel, A. Hirsch. Chem.—Eur. J. 3, 1105 (1997). (http://dx.doi.org/10.1002/chem.19970030718)
 - 44. A. , M. Tommasini, M. Del Zoppo, C. Castiglioni, G. Zerbi. Phys. Rev. B 74, 153418 (2006). (http://dx.doi.org/10.1103/PhysRevB.74.153418)
 - 45. M. , D. Fazzi, A. Milani, M. Del Zoppo, C. Castiglioni, G. Zerbi. J. Phys. Chem. A 111, 11645 (2007). (http://dx.doi.org/10.1021/jp0757006)
 - 46. M. , A. Milani, D. Fazzi, M. Del Zoppo, C. Castiglioni, G. Zerbi. Physica E 40, 2570 (2008). (http://dx.doi.org/10.1016/j.physe.2007.07.016)
 - 47. C. , M. Tommasini, G. Zerbi. Philos. Trans. R. Soc. Lond. A 362, 2425 (2004). (http://dx.doi.org/10.1098/rsta.2004.1448)
 - 48. C. , J. T. L. Navarrete, G. Zerbi, M. Gussoni. Solid State Commun. 65, 625 (1988). (http://dx.doi.org/10.1016/0038-1098(88)90352-3)
 - 49. J. O. . Spectrochim. Acta, Part A 60, 1895 (2004).
 - 50. C. S. , A. Li Bassi, A. Baserga, L. Ravagnan, P. Piseri, C. Lenardi, M. Tommasini, A. Milani, D. Fazzi, C. E. Bottani, P. Milani. Phys. Rev. B 77, 195444 (2008). (http://dx.doi.org/10.1103/PhysRevB.77.195444)
 - 51. J. , M. Reiher. J. Phys. Chem. A 108, 2053 (2004). (http://dx.doi.org/10.1021/jp036825n)
 - 52. M. , C. Castiglioni, P. Zuliani, G. Zerbi. Synth. Met. 85, 1043 (1997). (http://dx.doi.org/10.1016/S0379-6779(97)80145-2)
 - 53. A. , M. Tommasini, G. Zerbi. J. Chem. Phys. 128, 064501 (2008). (http://dx.doi.org/10.1063/1.2831507)
 - 54. A. , M. Tommasini, D. Fazzi, C. Castiglioni, M. Del Zoppo, G. Zerbi. J. Raman Spectrosc. 39, 164 (2008). (http://dx.doi.org/10.1002/jrs.1850)
 - 55. Increased cumulenic character vs. polyyne length based on Raman spectroscopy has been noted previously. For the study of polyynes by Raman spectroscopy, see refs. [56,57].
 - 56a. Raman spectroscopy: ref. [35].
 - 56b. H. , M. Fujii, S. Hayashi, T. Doi, T. Wakabayashi. Carbon 44, 3168 (2006). (http://dx.doi.org/10.1016/j.carbon.2006.07.004)
 - 56c. R. , T. Bartik, B. Bartik, M. Jaeger, J. A. Gladysz. J. Am. Chem. Soc. 122, 810 (2000). (http://dx.doi.org/10.1021/ja992747z)
 - 57a. SERS: ref. [56b].
 - 57b. C. S. , V. Russo, A. Li Bassi, C. E. Bottani, F. Cataldo, A. Lucotti, M. Tommasini, M. Del Zoppo, C. Castiglioni, G. Zerbi. Appl. Phys. Lett. 90, 013111 (2007). (http://dx.doi.org/10.1063/1.2430676)
 - 57c. A. , M. Tommasini, M. Del Zoppo, C. Castiglioni, G. Zerbi, F. Cataldo, C. S. Casari, A. Li Bassi, V. Russo, M. Bogana, C. E. Bottani. Chem. Phys. Lett. 417, 78 (2006). (http://dx.doi.org/10.1016/j.cplett.2005.10.016)
 - 58. S. , J. A. Gladysz. Chem. Rev. 106, PR1 (2006). (http://dx.doi.org/10.1021/cr068016g)
 - 59. CCDC Nos: 729156 (tBu[2]), 729157 (tBu[3]), 729158 (tBu[4]), 729159 (tBu[8]), 729160 (tBu[10]).
 - 60. M. , C. H. Choi, S. Yang. Chem. Rev. 105, 3448 (2005). (http://dx.doi.org/10.1021/cr990357p)
 - 61. R. . Angew. Chem., Int. Ed. Engl. 26, 846 (1987). (http://dx.doi.org/10.1002/anie.198708461)
 - 62. C. D. , D. P. Pullman. J. Phys. Chem. B 112, 7377 (2008). (http://dx.doi.org/10.1021/jp800302s)
 - 63. S. , M. Kertesz, V. Zólyomi, J. Kürti. J. Phys. Chem. A 111, 2434 (2007). (http://dx.doi.org/10.1021/jp067866x)
 - 64. S. , M. Kertesz. J. Phys. Chem. A 110, 9771 (2006). (http://dx.doi.org/10.1021/jp062701+)
 - 65. M. J. G. , E. I. Tellgren, P. Salek, T. Helgaker, D. J. Tozer. J. Phys. Chem. A 111, 11930 (2007). (http://dx.doi.org/10.1021/jp0754839)
 - 66. A. , P. Chaquin, M.-C. Gazeau, Y. Bénilan. J. Phys. Chem. A 106, 3828 (2002). (http://dx.doi.org/10.1021/jp013043q)
 - 67. L. , N. D. K. Petraco, C. Pak, H. F. Schaefer III. J. Am. Chem. Soc. 124, 5861 (2002). (http://dx.doi.org/10.1021/ja012014q)
 - 68. E. C. , D. Gusmeroli, C. E. Housecroft, M. Neuburger, S. Schaffner. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 62, O505 (2006). (http://dx.doi.org/10.1107/S0108270106025157)
 - 69. Crystallographic data for Ph[4] (C20H10), MW = 250.28; monoclinic crystal system; space group P21/n (an alternate setting of P21/c [No. 14]), a = 10.7824(12), b = 3.9194(5), c = 16.901(2) Å; σ = 106.0485(17)º; V = 686.39(14) Å3; Z = 2; ρcalcd = 1.211 g cm–3; μ = 0.069 mm–1; λ = 0.71 073 Å; T = –80 °C; 2θmax = 52.80º; total data collected = 4905; R1 = 0.0361 for 1179 observed reflections with [Fo2 ≥ 2σ(Fo2)]; wR2 = 0.1041 for 92 variables and 1404 unique reflections with [Fo2 ≥ –3σ(Fo2)]; residual electron density = 0.130 and –0.140 e Å–3.
 - 70. T. , E. Elliott, A. D. Slepkov, S. Eisler, R. McDonald, F. A. Hegmann, R. R. Tykwinski. Org. Lett. 7, 51 (2005). (http://dx.doi.org/10.1021/ol047931q)
 - 71. Crystallographic data for Tr*[4] (C94H126_0.5C4H10O), MW = 1293.01; monoclinic crystal system; space group P21/n (an alternate setting of P21/c [No. 14]); a = 28.705(9), b = 10.621(3), c = 29.280(9) Å; β = 92.763(4)º; V = 8916(5) Å3; Z = 4; ρcalcd = 0.963 g cm–3; μ = 0.054 mm–1; ? = 0.71 073 Å; T = –100 °C; 2θmax = 50.50º; total data collected = 61 984; R1 = 0.0584 for 16 159 observed reflections with [Fo2 ≥ –2σ(Fo2)]; wR2 = 0.1699 for 962 variables and 16 159 unique reflections with [Fo2 ≥ –3σ(Fo2)], and 14 restraints [The disordered diethylether solvent molecules had the following distance restraints applied: O–C restrained to be 1.430(2) Å; C–C, 1.530(2) Å; C···C, 2.340(4) Å; O···C, 2.420(4) Å]; residual electron density = 0.376 and –0.297 e Å–3.
 - 72. CCDC Nos: 745804 (Ph[4]), 729158 (tBu[4]), 660940 (Ad[4]), 265860 (TIPS[4]), and 745805 (Tr*[4]).
 
