Pure Appl. Chem., 2010, Vol. 82, No. 5, pp. 1065-1097
http://dx.doi.org/10.1351/PAC-REP-09-10-24
Published online 2010-04-20
Empirical and theoretical models of equilibrium and non-equilibrium transition temperatures of supplemented phase diagrams in aqueous systems (IUPAC Technical Report)
References
- 1. H. , L. Slade. Carbohydr. Polym. 6, 213 (1986). (http://dx.doi.org/10.1016/0144-8617(86)90021-4)
 - 2. H. Levine, L. Slade. Water Science Reviews, Vol. 3, pp. 79–185, Cambridge University Press, Cambridge (1987).
 - 3. H. Levine, L. Slade. Water and Food Quality, pp. 71–134, Elsevier Applied Science, London (1988).
 - 4. H. , L. Slade. J. Chem. Soc., Faraday Trans. 1 84, 2619 (1988). (http://dx.doi.org/10.1039/f19888402619)
 - 5. L. , H. Levine. Pure Appl. Chem. 60, 1841 (1988). (http://dx.doi.org/10.1351/pac198860121841)
 - 6. Y. , M. Karel. Int. J. Food Sci. Technol. 26, 553 (1991).
 - 7. Y. . Carbohydr. Res. 238, 39 (1993). (http://dx.doi.org/10.1016/0008-6215(93)87004-C)
 - 8. D. S. Reid. Water Properties of Food, Pharmaceutical, and Biological Materials, pp. 59–76, CRC, Taylor & Francis (2006).
 - 9. R. A. , Y. Roos. Thermochim. Acta 380, 109 (2001). (http://dx.doi.org/10.1016/S0040-6031(01)00664-5)
 - 10. K. S. Pitzer. Thermodynamics, 3rd ed., McGraw-Hill Series in Advanced Chemistry, Chap. 14, pp. 251, McGraw-Hill, New York (1995).
 - 11. W. F. , J. W. Stout. J. Am. Chem. Soc. 58, 1144 (1936). (http://dx.doi.org/10.1021/ja01298a023)
 - 12. C. A. , M. Oguni, W. J. Sichina. J. Phys. Chem. 86, 998 (1982). (http://dx.doi.org/10.1021/j100395a032)
 - 13. R. J. . J. Phys. Chem. 91, 3354 (1987). (http://dx.doi.org/10.1021/j100296a049)
 - 14. R. J. , N. Møller, J. H. Weare. Geochim. Cosmochim. Acta 54, 575 (1990). (http://dx.doi.org/10.1016/0016-7037(90)90354-N)
 - 15. J. M. Prausnitz, R. N. Lichtenhaler, E. G. de Azevedo. Molecular Thermodynamics and Fluid-Phase Equilibria, 2nd ed., Prentice Hall, New Jersey (1986).
 - 16. S. A. , S. A. Cooke, E. A. Macedo. Carbohydr. Res. 337, 1563 (2002). (http://dx.doi.org/10.1016/S0008-6215(02)00213-6)
 - 17. M. , C. G. Dussap, C. Achard, J. B. Gros. Fluid Phase Equilib. 96, 33 (1994). (http://dx.doi.org/10.1016/0378-3812(94)80086-3)
 - 18. H. R. . Pure Appl. Chem. 67, 579 (1995). (http://dx.doi.org/10.1351/pac199567040579)
 - 19. D. S. , J. M. Prausnitz. AIChE. J. 21, 116 (1975). (http://dx.doi.org/10.1002/aic.690210115)
 - 20. M. Le Maguer. Physical Chemistry of Foods (IFT Basic Symposium Series 7), pp. 1–45, Marcel Dekker, New York (1992).
 - 21. B. L. , P. Rasmussen, A. Fredenslund. Ind. Eng. Chem. Res. 26, 2274 (1987). (http://dx.doi.org/10.1021/ie00071a018)
 - 22. A. Bondi. Physical Properties of Molecular Crystals, Liquids, and Glasses, John Wiley, New York (1968).
 - 23. A. M. , E. A. Macedo. Fluid Phase Equilib. 123, 71 (1996). (http://dx.doi.org/10.1016/0378-3812(96)03046-4)
 - 24. J. J. B. , J. A. Coutinho, E. A. Macedo. Fluid Phase Equilib. 173, 121 (2000). (http://dx.doi.org/10.1016/S0378-3812(00)00388-5)
 - 25. A. , R. L. Jones, J. M. Prausnitz. AIChE J. 21, 1086 (1975). (http://dx.doi.org/10.1002/aic.690210607)
 - 26. N. , C. Laguérie. Bull. Soc. Chim. Fr. 127, 391 (1990).
 - 27. Y. , N. Gabas, M. L. Delia, T. Bounahmidi. Fluid Phase Equilib. 73, 175 (1992). (http://dx.doi.org/10.1016/0378-3812(92)85047-C)
 - 28. C. , J. B. Gros, C. G. Dussap. Ind. Aliment. Agric. 109, 93 (1992).
 - 29. M. , C. G. Dussap, J. B. Gros. Fluid Phase Equilib. 105, 1 (1995). (http://dx.doi.org/10.1016/0378-3812(94)02604-Y)
 - 30. A. M. , E. A. Macedo. Fluid Phase Equilib. 139, 47 (1997). (http://dx.doi.org/10.1016/S0378-3812(97)00196-9)
 - 31. H. , H. Noritomi, D. Hoshino, K. Nagahama. Fluid Phase Equilib. 130, 117 (1997). (http://dx.doi.org/10.1016/S0378-3812(96)03209-8)
 - 32. N. , D. Tassios. Fluid Phase Equilib. 173, 39 (2000). (http://dx.doi.org/10.1016/S0378-3812(00)00387-3)
 - 33. O. , E. A. Brignole, E. A. Macedo. Ind. Eng. Chem. Res. 42, 6212 (2003). (http://dx.doi.org/10.1021/ie030246n)
 - 34. L. , C. G. Dussap, J. B. Gros. Food Chem. 96, 387 (2006). (http://dx.doi.org/10.1016/j.foodchem.2005.02.053)
 - 35. W. G. , J. E. Mayer. J. Chem. Phys. 13, 276 (1945). (http://dx.doi.org/10.1063/1.1724036)
 - 36. K. S. Pitzer. “Ion interaction approach: Theory and data correlation”, in Activity Coefficients in Electrolyte Solutions, R. M. Pytkowicz (Ed.), CRC Press, Boca Raton (1989).
 - 37. R. A. , R. H. Stokes, K. N. Marsh. J. Chem. Thermodyn. 2, 745 (1970). (http://dx.doi.org/10.1016/0021-9614(70)90050-9)
 - 38. T. M. , C. P. Meunier. J. Chem. Soc., Faraday Trans. 1 78, 225 (1982). (http://dx.doi.org/10.1039/f19827800225)
 - 39. H. L. , C. V. Krishnan. J. Solution Chem. 2, 2460 (1973).
 - 40. F. , M. Pedley, D. S. Reid. J. Chem. Soc., Faraday Trans. 1 72, 359 (1976). (http://dx.doi.org/10.1039/f19767200359)
 - 41. J. E. , G. Perron, L. Avédikian, J. P. Morel. J. Solution Chem. 5, 631 (1976). (http://dx.doi.org/10.1007/BF00648221)
 - 42. J. P. , C. Lhermet. Can. J. Chem. 63, 2639 (1985). (http://dx.doi.org/10.1139/v85-438)
 - 43. J. P. , C. Lhermet, N. Morel-Desrosiers. Can. J. Chem. 64, 996 (1986). (http://dx.doi.org/10.1139/v86-167)
 - 44. A. , N. Morel-Desrosiers, J. P. Morel. Can. J. Chem. 65, 2656 (1987). (http://dx.doi.org/10.1139/v87-439)
 - 45. J. P. , C. Lhermet, N. Morel-Desrosiers. J. Chem. Soc., Faraday Trans. 1 84, 2567 (1988). (http://dx.doi.org/10.1039/f19888402567)
 - 46. N. , J. P. Morel. J. Chem. Soc., Faraday Trans. 1 85, 3461 (1989). (http://dx.doi.org/10.1039/f19898503461)
 - 47. N. , C. Lhermet, J. P. Morel. J. Chem. Soc., Faraday Trans. 87, 2173 (1991). (http://dx.doi.org/10.1039/ft9918702173)
 - 48. N. , C. Lhermet, J. P. Morel. J. Chem. Soc., Faraday Trans. 89, 1223 (1993). (http://dx.doi.org/10.1039/ft9938901223)
 - 49. P. , N. Morel-Desrosiers, J. P. Morel. J. Chem. Soc., Faraday Trans. 91, 2771 (1995). (http://dx.doi.org/10.1039/ft9959102771)
 - 50. J. , W. Liu, T. Bai, J. Lu. J. Chem. Soc., Faraday Trans. 89, 1741 (1993). (http://dx.doi.org/10.1039/ft9938901741)
 - 51. J. , L. Zeng, W. Liu, J. Lu. Thermochim. Acta 224, 261 (1993). (http://dx.doi.org/10.1016/0040-6031(93)80176-B)
 - 52. J. , W. Liu, J. Fan, J. Lu. J. Chem. Soc., Faraday Trans. 90, 3281 (1994). (http://dx.doi.org/10.1039/ft9949003281)
 - 53. K. , J. Wang, J. Zhou, J. Lu. J. Phys. Chem. B 101, 3447 (1997). (http://dx.doi.org/10.1021/jp963828+)
 - 54. K. , J. Wang, J. Zhou, J. Lu. J. Phys. Chem. B 102, 3574 (1998). (http://dx.doi.org/10.1021/jp973036v)
 - 55. K. , J. Wang, J. Zhou, Y. Gao, J. Lu. Can. J. Chem. B 77, 232 (1999).
 - 56. K. , J. Wang, Y. Gao, J. Lu. Carbohydr. Res. 325, 46 (2000). (http://dx.doi.org/10.1016/S0008-6215(99)00298-0)
 - 57. Y. , S. Gao, S. Xia, J. Wang, K. Zhuo, M. Hu. J. Chem. Thermodyn. 34, 1959 (2002).
 - 58. Y. , M. Hu, P. Mu, J. Wang, K. Zhuo. J. Chem. Eng. Data 49, 1418 (2004). (http://dx.doi.org/10.1021/je0498816)
 - 59. Y. , M. Hu, S. Li, J. Wang, K. Zhuo. Carbohydr. Res. 341, 262 (2006). (http://dx.doi.org/10.1016/j.carres.2005.11.006)
 - 60. K. , G. Liu, Y. Wang, Q. Ren, J. Wang. Fluid Phase Equilib. 258, 78 (2007). (http://dx.doi.org/10.1016/j.fluid.2007.05.025)
 - 61. K. , H. Liu, H. Zhang, Y. Liu, J. Wang. J. Chem. Thermodyn. 40, 889 (2008). (http://dx.doi.org/10.1016/j.jct.2007.12.008)
 - 62. F. , E. Amado-Gonzalez, M. A. Esteso. Carbohydr. Res. 338, 1415 (2003). (http://dx.doi.org/10.1016/S0008-6215(03)00177-0)
 - 63. F. , D. Grandoso, M. Lemus. J. Chem. Eng. Data 49, 668 (2004). (http://dx.doi.org/10.1021/je034240g)
 - 64. M. H. , D. Turnbull. J. Chem. Phys. 31, 1164 (1959). (http://dx.doi.org/10.1063/1.1730566)
 - 65. H. B. Callen. Thermodynamics, John Wiley, New York (1960).
 - 66. J. M. , J. S. Taylor. J. Appl. Chem. 2, 493 (1952). (http://dx.doi.org/10.1002/jctb.5010020901)
 - 67. R. , R. F. Boyer. J. Chem. Phys. 37, 1003 (1962). (http://dx.doi.org/10.1063/1.1733201)
 - 68. E. , R. Heusch. Kolloidn. Zh. 130, 89 (1953). (http://dx.doi.org/10.1007/BF01519799)
 - 69. A. V. . Phys. Chem. Glasses 16, 83 (1975).
 - 70. P. R. , F. E. Karasz. Macromolecules 11, 117 (1978). (http://dx.doi.org/10.1021/ma60061a021)
 - 71. P. R. . Macromolecules 20, 1712 (1987). (http://dx.doi.org/10.1021/ma00173a045)
 - 72. J. M. , G. B. Rouse, J. H. Gibbs, W. M. Risen Jr. J. Chem. Phys. 66, 4971 (1977). (http://dx.doi.org/10.1063/1.433798)
 - 73. G. , F. E. Karasz, T. S. Ellis. Macromolecules 16, 244 (1983). (http://dx.doi.org/10.1021/ma00236a017)
 - 74. T. K. . J. Polym. Sci., Polym. Lett. Ed. 22, 307 (1984). (http://dx.doi.org/10.1002/pol.1984.130220603)
 - 75. Y. I. , V. Y. Grinberg, V. B. Tolstoguzov. Food Hydrocolloids 14, 425 (2000). (http://dx.doi.org/10.1016/S0268-005X(00)00020-5)
 - 76. Y. I. , S. Ablett. Food Hydrocolloids 16, 419 (2002). (http://dx.doi.org/10.1016/S0268-005X(01)00117-5)
 - 77. Y. I. . Food Hydrocolloids 18, 363 (2004). (http://dx.doi.org/10.1016/S0268-005X(03)00091-2)
 - 78. S. K. , C. J. King. J. Food Sci. 36, 699 (1971). (http://dx.doi.org/10.1111/j.1365-2621.1971.tb15165.x)
 - 79. R. N. , Y. B. Tewari. J. Phys. Chem. Ref. Data 18, 809 (1989). (http://dx.doi.org/10.1063/1.555831)
 - 80. F. E. . J. Phys. Chem. 61, 616 (1957). (http://dx.doi.org/10.1021/j150551a023)
 - 81. F. E. , F. T. Jones, A. J. Lewis. J. Phys. Chem. 56, 1093 (1952). (http://dx.doi.org/10.1021/j150501a015)
 - 82. F. E. , F. T. Jones. J. Phys. Chem. 53, 1334 (1949). (http://dx.doi.org/10.1021/j150474a004)
 - 83. G. . Z. Zuckerind. 12, 481 (1962).
 - 84. A. N. , V. I. Kosyakov, D. V. Malakhov, E. Y. Shalaev. Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Khim. Nauk. 2, 11 (1989).
 - 85a. Y. , M. Karel. CryoLett. 12, 367 (1991).
 - 85b. Y. , M. Karel. Biotechnol. Prog. 6, 159 (1990). (http://dx.doi.org/10.1021/bp00002a011)
 - 86. S. , M. J. Izzard, P. J. Lillford. J. Chem. Soc., Faraday Trans. 88, 789 (1992). (http://dx.doi.org/10.1039/ft9928800789)
 - 87. International Critical Tables, McGraw-Hill, New York (1928).
 - 88. F. W. , F. H. Cocks, M. L. Shepard. J. Appl. Chem. Biotechnol. 27, 599 (1977). (http://dx.doi.org/10.1002/jctb.5020270505)
 - 89. E. Y. , F. Franks. Thermochim. Acta 255, 49 (1995). (http://dx.doi.org/10.1016/0040-6031(94)02180-V)
 - 90. T. , A. Fowler, M. Toner. Cryobiology 40, 277 (2000). (http://dx.doi.org/10.1006/cryo.2000.2244)
 - 91. H. , A. Hvidt. Cryobiology 31, 199 (1994). (http://dx.doi.org/10.1006/cryo.1994.1024)
 - 92. D. P. , J. J. de Pablo, H. R. Corti. Pharm. Res. 14, 578 (1997). (http://dx.doi.org/10.1023/A:1012192725996)
 - 93. P. M. . J. Therm. Anal. 49, 817 (1997).
 - 94. A. M. , S. J. Schmidt, G. A. Day. Food Chem. 61, 139 (1998). (http://dx.doi.org/10.1016/S0308-8146(97)00132-5)
 - 95. C. J. , F. Franks. J. Chem. Soc., Faraday Trans. 92, 1337 (1998). (http://dx.doi.org/10.1039/ft9969201337)
 - 96. G. , D. Simatos, M. Catté, C. G. Dussap, J. B. Gros. Carbohydr. Res. 298, 139 (1997). (http://dx.doi.org/10.1016/S0008-6215(96)00313-8)
 - 97. S. A. , P. Rasmussen. Fluid Phase Equilib. 158–160, 411 (1999). (http://dx.doi.org/10.1016/S0378-3812(99)00078-3)
 - 98. M. , H. Suga, S. Seki. Bull. Chem. Soc. Jpn. 41, 2591 (1968). (http://dx.doi.org/10.1246/bcsj.41.2591)
 - 99. D. R. , C. A. Angell. J. Phys. Chem. 88, 759 (1984). (http://dx.doi.org/10.1021/j150648a029)
 - 100. A. , E. Mayer, G. P. Johari. J. Phys. Chem. 93, 4986 (1989). (http://dx.doi.org/10.1021/j100349a061)
 - 101. G. P. , A. Hallbrucker, E. Mayer. Science 273, 90 (1996). (http://dx.doi.org/10.1126/science.273.5271.90)
 - 102. G. P. , A. Hallbrucker, E. Mayer. Nature 330, 552 (1987). (http://dx.doi.org/10.1038/330552a0)
 - 103. A. , E. Mayer, G. P. Johari. Philos. Mag. 60, 170 (1989).
 - 104. G. P. , G. Astl, E. Mayer. J. Chem. Phys. 92, 809 (1990). (http://dx.doi.org/10.1063/1.458386)
 - 105. G. P. , A. Hallbrucker, E. Mayer. J. Chem. Phys. 92, 6742 (1990). (http://dx.doi.org/10.1063/1.458593)
 - 106. I. , A. Hallbrucker, E. Mayer. Phys. Chem. Chem. Phys. 2, 1579 (2000). (http://dx.doi.org/10.1039/a908688i)
 - 107. I. , L. Bachmann, E. Mayer, A. Hallbrucker, T. Loerting. Nature 435, E1 (2005). (http://dx.doi.org/10.1038/nature03707)
 - 108. C. A. , J. C. Tucker. J. Phys. Chem. 84, 268 (1980). (http://dx.doi.org/10.1021/j100440a009)
 - 109. M. , C. A. Angell. J. Chem. Phys. 73, 1948 (1980). (http://dx.doi.org/10.1063/1.440303)
 - 110. K. , C. T. Moynihan, C. A. Angell. Nature 398, 492 (1999).
 - 111. C. A. . Science 319, 582 (2008). (http://dx.doi.org/10.1126/science.1131939)
 - 112. Y. , C. A. Angell. Nature 427, 717 (2004). (http://dx.doi.org/10.1038/nature02295)
 - 113. P. H. , U. Essmann, F. Sciortino, H. E. Stanley. Phys. Rev. E 48, 4605 (1993). (http://dx.doi.org/10.1103/PhysRevE.48.4605)
 - 114. J. A. , M. Venugopalan. J. Geophys. Res. 72, 3271 (1967). (http://dx.doi.org/10.1029/JZ072i012p03271)
 - 115. B. V. . Russ. J. Phys. Chem. 43, 1311 (1969).
 - 116. B. , D. Rasmussen. Biodynamica 10, 167 (1968).
 - 117. H. D. . Pure Appl. Chem. 67, 1801 (1995). (http://dx.doi.org/10.1351/pac199567111801)
 - 118. A. , G. Zografi. Pharm. Res. 11, 1166 (1994). (http://dx.doi.org/10.1023/A:1018945117471)
 - 119. M.-A. , W. MacNaughtan, I. A. Farhat. Carbohydr. Res. 338, 2195 (2003). (http://dx.doi.org/10.1016/S0008-6215(03)00342-2)
 - 120. E. Y. , F. Franks. J. Chem. Soc., Faraday Trans. 91, 1511 (1995). (http://dx.doi.org/10.1039/ft9959101511)
 - 121. S. , L. Taylor, G. Zografi, J. Pharm. Sci. 87, 694 (1998). (http://dx.doi.org/10.1021/JS9704801)
 - 122. A. A. , T. Sebhatu, C. Ahlneck. Int. J. Pharm. 119, 25 (1995). (http://dx.doi.org/10.1016/0378-5173(94)00364-B)
 - 123. D. , J. de Pablo. J. Phys. Chem. B 104, 8876 (2000). (http://dx.doi.org/10.1021/jp000807d)
 - 124. P. D. , R. Parker, S. G. Ring. Carbohydr. Res. 196, 11 (1990). (http://dx.doi.org/10.1016/0008-6215(90)84102-Z)
 - 125. R. H. M. , C. Van den Berg, F. Franks. Cryo-Lett. 12, 113 (1991).
 - 126. D. P. , J. J. de Pablo, H. R. Corti. J. Phys. Chem. B 103, 10243 (1999). (http://dx.doi.org/10.1021/jp984736i)
 - 127. L. M. , D. S. Reid, J. H. Crowe. Biophys. J. 71, 2087 (1996). (http://dx.doi.org/10.1016/S0006-3495(96)79407-9)
 - 128. M. E. , A. M. Elias. J. Mol. Liq. 83, 303 (1999). (http://dx.doi.org/10.1016/S0167-7322(99)00094-X)
 - 129. S. P. , J. Fan, J. L. Green, E. Sanchez, C. A. Angell. J. Therm. Anal. 47, 1391 (1996).
 - 130. L. , G. Zografi. J. Pharm. Sci. 87, 1615 (1998). (http://dx.doi.org/10.1021/js9800174)
 - 131. P. D. , R. Parker, S. G. Ring, A. C. Smith. Int. J. Biol. Macromol. 11, 91 (1989). (http://dx.doi.org/10.1016/0141-8130(89)90048-2)
 - 132. I. I. , F. Levine. Cryobiology 49, 62 (2004). (http://dx.doi.org/10.1016/j.cryobiol.2004.05.004)
 - 133. K. , T. S. Suzuki, R. Takai. Cryo-Lett. 23, 79 (2002). (http://dx.doi.org/10.1016/S0304-3835(02)00161-1)
 - 134. H. , P. Le Bail, B. Leroux, J. Davy, P. Roger, A. Buleon. Carbohydr. Polym. 32, 33 (1997). (http://dx.doi.org/10.1016/S0144-8617(96)00146-4)
 - 135. D. M. R. , A. C. Smith, K. W. Waldron. Thermochim. Acta 332, 203 (1999). (http://dx.doi.org/10.1016/S0040-6031(99)00075-1)
 - 136. V. , S. Guilbert. Int. J. Biol. Macromol. 27, 229 (2000). (http://dx.doi.org/10.1016/S0141-8130(00)00122-7)
 - 137. B. , C. Icard-Vernière. J. Cereal Sci. 33, 213 (2001). (http://dx.doi.org/10.1006/jcrs.2000.0357)
 - 138. A. A. , T. K. Kwei, A. Reiser. Macromolecules 22, 4112 (1989). (http://dx.doi.org/10.1021/ma00200a052)
 - 139. P. J. A. , V. R. N. Telis, A. M. Q. B. Habitante, A. Sereno. Thermochim. Acta 376, 83 (2001). (http://dx.doi.org/10.1016/S0040-6031(01)00533-0)
 - 140. F. Franks. “Water and aqueous solutions: Recent advances”, in Properties of Water in Foods, D. Simatos, J. L. Multon (Eds.), pp. 497–509, Martinus Nijhoff, Dordrecht (1985).
 - 141. S. Ablett, A. H. Darke, M. J. Izzard, P. J. Lillford. The Glassy State in Foods, pp. 189–206, Nottingham Press, Leicestershire, UK (1993).
 - 142. T. W. , K. Courtney, B. Israel. Cryo-Lett. 14, 91 (1993).
 - 143. S. , M. J. Izzard, P. J. Lillford, I. Arvanitoyannis, J. M. V. Blanshard. Carbohydr. Res. 246, 13 (1993). (http://dx.doi.org/10.1016/0008-6215(93)84020-7)
 - 144. H. , M. Sakurai, Y. Inone, R. Chujo, S. Kobayashi. Cryobiology 29, 599 (1992). (http://dx.doi.org/10.1016/0011-2240(92)90064-9)
 - 145. C. . Carbohydr. Netherlands 8, 23 (1992).
 - 146. E. R. , J. R. Grigera. Carbohydr. Res. 300, 51 (1997). (http://dx.doi.org/10.1016/S0008-6215(97)00029-3)
 - 147. P. B. , J. J. de Pablo. J. Phys. Chem. A 103, 4049 (1999). (http://dx.doi.org/10.1021/jp984102b)
 - 148. F. A. , J. L. Willett. Biopolymers 63, 99 (2002). (http://dx.doi.org/10.1002/bip.10014)
 - 149. S. , Y. Aso, S. Kojima. Pharm. Res. 20, 873 (2003). (http://dx.doi.org/10.1023/A:1023831102203)
 - 150. K. , L. Heux. J. Phys. Chem. B 107, 2394 (2003). (http://dx.doi.org/10.1021/jp0219395)
 - 151. S. W. , J. A. Chisholm, W. Jones, W. D. S. Motherwell. J. Chem. Phys. 121, 9565 (2004). (http://dx.doi.org/10.1063/1.1806792)
 - 152. A. , A. Kornherr, R. Chopra, P. A. Bonnet, W. Jones, W. D. S. Motherwell, G. Zifferer. J. Phys. Chem. B 110, 19678 (2006). (http://dx.doi.org/10.1021/jp063134t)
 - 153. A. , A. Kornherr, R. Chopra, W. Jones, W. D. S. Motherwell, G. Zifferer. Carbohydr. Res. 342, 1470 (2007). (http://dx.doi.org/10.1016/j.carres.2007.04.011)
 - 154. D. , B. Liu, Y. Liu, C. Chen. Cryobiology 56, 114 (2008). (http://dx.doi.org/10.1016/j.cryobiol.2007.11.003)
 - 155. V. , W. A. J. Goddard III. J. Phys. Chem. B 108, 1414 (2004). (http://dx.doi.org/10.1021/jp0354752)
 - 156. V. , T. Ça?in, W. A. Goddard III. J. Phys. Chem. A 108, 3699 (2004). (http://dx.doi.org/10.1021/jp036680k)
 - 157. Y. . Carbohydr. Res. 300, 51 (1997).
 - 158. R. M. , P. G. Debenedetti. J. Phys. Chem. B 109, 6527 (2005). (http://dx.doi.org/10.1021/jp0458553)
 - 159. H. M. , N. B. Wilding. Phys. Rev. E 73, 061507 (2006). (http://dx.doi.org/10.1103/PhysRevE.73.061507)
 - 160. V. , S. Sastry, C. A. Angell. Phys. Rev. Lett. 97, 075701 (2006). (http://dx.doi.org/10.1103/PhysRevLett.97.075701)
 - 161. C. A. . J. Non-Cryst. Solids 354, 4703 (2008). (http://dx.doi.org/10.1016/j.jnoncrysol.2008.05.054)
 - 162. V. Kapko, D. V. Matyushov, C. A. Angell. To be published.
 - 163. G. . Ann. Chem. 2, 233 (1957).
 
