Pure Appl. Chem., 2011, Vol. 83, No. 5, pp. 1015-1030
http://dx.doi.org/10.1351/PAC-CON-11-01-07
Published online 2011-04-04
Chemistry of salts in aqueous solutions: Applications, experiments, and theory
References
- 1. M. Ladd. Chemical Bonding in Solids and Fluids, Ellis Horwood, New York (1994).
 - 2. W. Kunz (Ed.). Specific Ion Effects, World Scientific, Singapore (2010).
 - 3. J. D’Ans. Die Löslichkeitsgleichgewichte der Systeme der Salze ozeanischer Salzablagerungen, Verlagsgesellschaft für Ackerbau mbH, Berlin (1933).
 - 4. H. . Kali Steinsalz 2, 18 (1958).
 - 5. H. , G. Braune. Kali Steinsalz 3, 395 (1959).
 - 6. Th. Fanghänel, H.-H. Emons. Neue Ergebnisse über die fest-flüssig Gleichgewichte der Systeme der ozeanischen Salze (T > 100 °C), Abh. Sächs. Akad. Wiss. zu Leipzig 57, 3 (1992).
 - 7a. R. , H.-H. Emons, H. Holldorf. Freib. Forsch. A 628, 7 (1981).
 - 7b. R. , H.-H. Emons, H. Holldorf. Freib. Forsch. A 628, 19 (1981).
 - 8. W. . Freibforsch. A 853, 5 (1999).
 - 9. W. . Pure Appl. Chem. 73, 831 (2001). (http://dx.doi.org/10.1351/pac200173050831)
 - 10. D. , W. Voigt. Geochim. Cosmochim. Acta 68, 307 (2004). (http://dx.doi.org/10.1016/S0016-7037(03)00215-1)
 - 11. D. E. Garrett. Handbook of Lithium and Natural Calcium Chloride, Elsevier, Academic Press (2004).
 - 12. M. . Restor. Build. Monum. 11, 419 (2005).
 - 13. M. , J. Asmussen. Geochim. Cosmochim. Acta 72, 4291 (2008). (http://dx.doi.org/10.1016/j.gca.2008.05.053)
 - 14. D. , K. Thomsen. Icarus 212, 123 (2011). (http://dx.doi.org/10.1016/j.icarus.2010.11.025)
 - 15. E. , G. Hefter, P. May. Pure Appl. Chem. 81, 1537 (2009). (http://dx.doi.org/10.1351/PAC-CON-09-01-02)
 - 16. P. , E. Hückel. Phys. Z. 24, 185 (1923).
 - 17. J. N. . Trans. Faraday Soc. 23, 416 (1927). (http://dx.doi.org/10.1039/tf9272300416)
 - 18. E. A. . Philos. Mag. 22, 322 (1936).
 - 19. E. A. , J. C. Turgeon. Trans. Faraday Soc. 51, 747 (1955). (http://dx.doi.org/10.1039/tf9555100747)
 - 20. G. , R. M. Rush, J. S. Johnson. J. Phys. Chem. 74, 3786 (1970). (http://dx.doi.org/10.1021/j100715a013)
 - 21. P. J. , R. H. Wood, R. A. Robinson. J. Phys. Chem. 75, 1305 (1971). (http://dx.doi.org/10.1021/j100679a023)
 - 22. K. S. Pitzer. In Activity Coefficients in Electrolyte Solutions, 2nd ed., K. S. Pitzer (Ed.), pp. 75–153, CRC Press, Boca Raton (1991).
 - 23. THEREDA project, <www.thereda.de>.
 - 24. I. Grenthe, I. Puigdomenech. Modeling in Aquatic Chemistry, NEA-OECD Publications, Paris (1997).
 - 25. S. A. , J. Carrera, C. Ayora, F. Battle. Computers Geosci. 36, 526 (2010). (http://dx.doi.org/10.1016/j.cageo.2009.09.004)
 - 26. W. , V. Brendler, K. Marsh, R. Rarey, H. Wanner, M. Gaune-Escard, P. Cloke, Th. Vercouter, E. Bastrakov, S. Hagemann. Pure Appl. Chem. 79, 883 (2007). (http://dx.doi.org/10.1351/pac200779050883)
 - 27. X. , E. A. Macedo. Ind. Eng. Chem. Res. 42, 5702 (2003). (http://dx.doi.org/10.1021/ie030514h)
 - 28. G. R. , F. Arabgol. CALPHAD 29, 125 (2005). (http://dx.doi.org/10.1016/j.calphad.2005.06.003)
 - 29. A. , M. Joda. Int. J. Thermophys. 28, 876 (2007). (http://dx.doi.org/10.1007/s10765-007-0211-1)
 - 30. A. , A. Shojaeian, S. H. Mazloumi. J. Chem. Thermodyn. 43, 354 (2011). (http://dx.doi.org/10.1016/j.jct.2010.10.004)
 - 31. X. , X. Wang. J. Chem. Eng. Data 54, 179 (2009). (http://dx.doi.org/10.1021/je800965t)
 - 32. C. C. , H. J. Britt, J. F. Boston, L. B. Evans. AIChE J. 28, 589 (1982).
 - 33. X. , G. Maurer. AIChE J. 39, 1527 (1993). (http://dx.doi.org/10.1002/aic.690390912)
 - 34. X. , L. Zhang, Y. Wang, J. Shi. Fluid Phase Equilib. 116, 201 (1996). (http://dx.doi.org/10.1016/0378-3812(96)83887-8)
 - 35. M. C. , K. Thomsen, P. Rasmussen. AIChE J. 48, 2664 (2002). (http://dx.doi.org/10.1002/aic.690481125)
 - 36. A. , G. Aly. Fluid Phase Equilib. 175, 213 (2000). (http://dx.doi.org/10.1016/S0378-3812(00)00450-7)
 - 37. H. , M. Osako, A. Kida, K. Nishimura, K. Kawamoto, Y. Asakuma, K. Fukui, K. Maeda. Ind. Eng. Chem. Res. 44, 3289 (2005). (http://dx.doi.org/10.1021/ie049377u)
 - 38. H.-M. , J. Li, J. Gmehling. Fluid Phase Equilib. 162, 97 (1999).
 - 39. J. , Y. Lin, J. Gmehling. Ind. Eng. Chem. Res. 44, 1602 (2005). (http://dx.doi.org/10.1021/ie049283k)
 - 40. J. M. G. Barthel, H. Krienke, W. Kunz. Physical Chemistry of Electrolyte Solutions, Steinkopf Darmstadt, Springer, New York (1998).
 - 41. Z.-C. . J. Chem. Eng. Data 54, 187 (2009).
 - 42. E. , P. May, B. Harris. Hydrometallurgy 90, 177 (2008). (http://dx.doi.org/10.1016/j.hydromet.2007.10.009)
 - 43. E. , L.-C. Königsberger, P. May, B. Harris. Hydrometallurgy 90, 168 (2008). (http://dx.doi.org/10.1016/j.hydromet.2007.10.007)
 - 44. Y. . Pure Appl. Chem. 59, 1093 (1987). (http://dx.doi.org/10.1351/pac198759091093)
 - 45. Y. . J. Chem. Soc., Faraday Trans. 87, 2995 (1991). (http://dx.doi.org/10.1039/ft9918702995)
 - 46. M. W. Chase. J. Phys. Chem. Ref. Data, Monograph No. 9, NIST-JANAF Thermochemical Tables, 4th ed., ACS, AIP, NIST (1998).
 - 47. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).
 - 48. H. C. , D. H. Kirkham, G. C. Flowers. Am. J. Sci. 281, 1249 (1981). (http://dx.doi.org/10.2475/ajs.281.10.1249)
 - 49. J. R. , E. L. Shock, D. C. Sassani. Geochim. Cosmochim. Acta 59, 4329 (1995). (http://dx.doi.org/10.1016/0016-7037(95)00314-P)
 - 50. J. W. , E. Oelkers, H. C. Helgeson. Computers Geosci. 18, 899 (1992). (http://dx.doi.org/10.1016/0098-3004(92)90029-Q)
 - 51a. E. , J. W. Cobble. J. Phys. Chem. B 113, 2398 (2009). (http://dx.doi.org/10.1021/jp8055398)
 - 51b. E. , J. W. Cobble. J. Phys. Chem. B 113, 5002 (2009).
 - 51c. E. , J. W. Cobble. J. Phys. Chem. B 113, 10792 (2009). (http://dx.doi.org/10.1021/jp902042b)
 - 52. E. , J. W. Cobble. J. Phys. Chem. B 114, 3887 (2010). (http://dx.doi.org/10.1021/jp910764n)
 - 53. R. J. Fernandez-Prini, H. R. Corti, M. L. Japas. High-Temperature Aqueous Solutions: Thermodynamic Properties, CRC Press, Boca Raton, London (1992).
 - 54. J. Rard, R. F. Platford. In Activity Coefficients in Electrolyte Solutions, 2nd ed., K. S. Pitzer (Ed.), pp. 75–153, CRC Press, Boca Raton (1991).
 - 55. A. , E. Korin. J. Chem. Thermodyn. 33, 113 (2001). (http://dx.doi.org/10.1006/jcht.2000.0731)
 - 56. A. , E. Korin. J. Chem. Thermodyn. 39, 1065 (2007). (http://dx.doi.org/10.1016/j.jct.2006.12.010)
 - 57. M. , J. M. Simonson. J. Chem. Thermodyn. 37, 906 (2005). (http://dx.doi.org/10.1016/j.jct.2004.12.009)
 - 58. J. N. Butler, R. N. Roy. In Activity Coefficients in Electrolyte Solutions, 2nd ed., K. S. Pitzer (Ed.), pp. 75–153, CRC Press, Boca Raton (1991).
 - 59. W. J. . J. Am. Chem. Soc. 57, 9 (1935). (http://dx.doi.org/10.1021/ja01304a004)
 - 60. G. M. , P. Longhi, T. Mussini, S. Rondinini. J. Chem. Thermodyn. 9, 997 (1977). (http://dx.doi.org/10.1016/0021-9614(77)90222-1)
 - 61. Z. , G. Shi-Yang, X. Shu-Ping. J. Chem. Thermodyn. 35, 1383 (2003).
 - 62. M. J. V. , F. J. V. Santos, M. L. V. Ramires, C. A. Nieto de Castro. J. Chem. Thermodyn. 38, 970 (2006). (http://dx.doi.org/10.1016/j.jct.2005.10.010)
 - 63. S. , E. Königsberger, P. M. May, G. Hefter. Geochim. Cosmochim. Acta 74, 2368 (2010). (http://dx.doi.org/10.1016/j.gca.2010.01.002)
 - 64. D. , R. H. Wood. J. Chem. Thermodyn. 13, 1047 (1981). (http://dx.doi.org/10.1016/0021-9614(81)90004-5)
 - 65. J. S. , S. P. Ziemer, B. R. Browns, E. M. Woolley. J. Chem. Thermodyn. 39, 550 (2007). (http://dx.doi.org/10.1016/j.jct.2006.09.008)
 - 66. A. W. H. , J. L. Liu, K. Erickson, J.-V. Munoz, J. A. Rard. J. Chem. Thermodyn. 37, 153 (2005). (http://dx.doi.org/10.1016/j.jct.2004.08.010)
 - 67. Ch. S. , J. A. Rard, D. G. Archer. J. Chem. Eng. Data 49, 313 (2004). (http://dx.doi.org/10.1021/je0302194)
 - 68. K. , M. L. Origlia, E. M. Woolley. Thermochim. Acta 347, 3 (2000). (http://dx.doi.org/10.1016/S0040-6031(99)00428-1)
 - 69. X. , J. L. Oscarson, S. E. Gillespie, R. M. Izatt. Thermochim. Acta 11, 285 (1996).
 - 70. D. A. , E. M. Woolley, J. M. Simonson, R. E. Mesmer. J. Chem. Thermodyn. 33, 205 (2001). (http://dx.doi.org/10.1006/jcht.2001.0754)
 - 71. G. , G. di Giacomo, F. Fantauzzi. Thermochim. Acta 161, 201 (1990). (http://dx.doi.org/10.1016/0040-6031(90)80301-E)
 - 72. G. , H. Jahn. Thermochim. Acta 116, 291 (1987). (http://dx.doi.org/10.1016/0040-6031(87)88190-X)
 - 73. L.-O. . Chem. Geol. 151, 41 (1998). (http://dx.doi.org/10.1016/S0009-2541(98)00069-2)
 - 74. J. , E. Königsberger, P. M. May. Dalton Trans. 7717 (2009). (http://dx.doi.org/10.1039/b906803a)
 - 75. J. , T. M. Seward, J. K. Hovey. Geochim. Cosmochim. Acta 62, 1643 (1998). (http://dx.doi.org/10.1016/S0016-7037(98)00084-2)
 - 76. J. , D. C. McPhail, J. Black, L. Spiccia. Geochim. Cosmochim. Acta 65, 2691 (2001). (http://dx.doi.org/10.1016/S0016-7037(01)00614-7)
 - 77. T. , P. Sipos, H. Gamsjäger. Monatsh. Chem. 140, 1293 (2009). (http://dx.doi.org/10.1007/s00706-009-0188-5)
 - 78. P. , G. Hefter, P. M. May. Talanta 70, 761 (2006). (http://dx.doi.org/10.1016/j.talanta.2006.02.008)
 - 79. W. W. , G. Irmer, E. Königsberger. Dalton Trans. 900 (2008). (http://dx.doi.org/10.1039/b713254a)
 - 80. G. T. Hefter, R. P. T. Tomkins (Eds.). The Experimental Determination of Solubilities, Wiley Series of Solution Chemistry, Vol. 6, John Wiley, New York (2003).
 - 81. J. H. . Z. Anorg. Chem. 47, 244 (1905). (http://dx.doi.org/10.1002/zaac.19050470116)
 - 82. H. S. . J. Phys. Chem. 106, 93 (1917).
 - 83. Ch. E. , N. Möller, J. H. Weare. Geochim. Cosmochim. Acta 48, 723 (1984). (http://dx.doi.org/10.1016/0016-7037(84)90098-X)
 - 84. F. K. , J. M. Bell. J. Phys. Chem. 10, 202 (1906). (http://dx.doi.org/10.1021/j150075a002)
 - 85. A. S. . Trud. Khim.-Metallug. Inst., Sap.-Sibirsk. Filial. Akad. Nauk. SSSR 35, 35 (1958).
 - 86. G. Wollmann. Crystallization filed of Polyhalite and its Heavy Metal Analogues, Dissertation, TU Bergakademie Freiberg (2010).
 - 87. Ch. , R. Duhlev. J. Solid State Chem. 55, 1 (1984). (http://dx.doi.org/10.1016/0022-4596(84)90240-8)
 - 88. R. C. , R. Wang. Geology 34, 957 (2006). (http://dx.doi.org/10.1130/G22678A.1)
 - 89. F. E. , M. Lutz, A. L. Spek, G.-J. Witkamp. Cryst. Growth Des. 7, 2460 (2007). (http://dx.doi.org/10.1021/cg060794e)
 - 90. P. D. , J. H. Fang, Y. Ohya. Am. Mineral. 57, 1325 (1972).
 - 91. J. H. , P. D. Robinson. Am. Mineral. 55, 378 (1970).
 - 92. H. D. B. , L. Glasser, J. F. Liebman. J. Chem. Eng. Data 55, 4369 (2010). (http://dx.doi.org/10.1021/je100543c)
 - 93. H. D. B. , L. Glasser. J. Chem. Eng. Data 55, 4231 (2010). (http://dx.doi.org/10.1021/je100383t)
 - 94. H. D. B. , L. Glasser. Inorg. Chem. 41, 4378 (2002). (http://dx.doi.org/10.1021/ic020222t)
 - 95. C. H. , N. R. Gotlieb, A. N. Rowand. Am. Mineral. 95, 47 (2010). (http://dx.doi.org/10.2138/am.2010.3244)
 - 96. C. H. , J. P. Rowand. Am. Mineral. 91, 747 (2006). (http://dx.doi.org/10.2138/am.2006.2073)
 - 97. M. . Angew. Chem. 114, 3896 (2002). (http://dx.doi.org/10.1002/1521-3757(20021018)114:20<3896::AID-ANGE3896>3.0.CO;2-Z)
 - 98. I. V. , J. C. Schön, M. Jansen. Z. Anorg. Allg. Chem. 636, 1703 (2010). (http://dx.doi.org/10.1002/zaac.201000093)
 - 99. V. B. . Powder Diffr. 23, 52 (2008). (http://dx.doi.org/10.1154/1.2840634)
 - 100. G. , W. Voigt. Fluid Phase Equilib. 291, 76 (2010). (http://dx.doi.org/10.1016/j.fluid.2009.12.008)
 - 101. V. M. Valyashko. Phase Equilibria and Properties of Hydrothermal Systems, Nauka, Moscow (1992).
 - 102. D. , W. Voigt. Geochim. Cosmochim. Acta 68, 307 (2004). (http://dx.doi.org/10.1016/S0016-7037(03)00215-1)
 - 103. H.-H. Emons, Th. Fanghänel, W. Voigt. Salzhydratschmelzen: Ein Bindeglied zwischen Elektrolytlösungen und Salzschmelzen, Sitzungsber. AdW DDR 3N Akademieverlag, Berlin (1986).
 - 104. W. , P. Klæboe. Acta Chem. Scand. A40, 354 (1986). (http://dx.doi.org/10.3891/acta.chem.scand.40a-0354)
 - 105. Th. , H.-H. Emons, K. Köhnke. Z. Anorg. Allg. Chem. 576, 99 (1989). (http://dx.doi.org/10.1002/zaac.19895760112)
 - 106. M. R. , J. Braunstein. J. Chem. Thermodyn. 30, 49 (1998). (http://dx.doi.org/10.1006/jcht.1997.0278)
 - 107. M. R. . J. Chem. Eng. Data 54, 411 (2009).
 - 108. S. L. , J. M. Simonson. J. Chem. Thermodyn. 33, 1457 (2001). (http://dx.doi.org/10.1006/jcht.2001.0869)
 - 109. W. , D. Zeng. Pure Appl. Chem. 74, 1909 (2002). (http://dx.doi.org/10.1351/pac200274101909)
 - 110. D. , W. Voigt. CALPHAD 27, 243 (2003). (http://dx.doi.org/10.1016/j.calphad.2003.09.004)
 - 111. Y. . J. Solution Chem. 34, 307 (2005). (http://dx.doi.org/10.1007/s10953-005-3051-2)
 - 112. W. Voigt, K. Hettrich, D. Zeng. “Ion coordination and thermodynamic modeling of molten salt hydrate mixtures”, in Thermodynamic Properties of Complex Fluid Mixtures, G. Maurer (Ed.), pp. 241–266, Wiley-VCH, Weinheim (2004).
 - 113. S. K. , M. D. Schiavelli, K. D. Stocker, M. D. Ingram. J. Phys. Chem. 94, 2684 (1990). (http://dx.doi.org/10.1021/j100369a082)
 - 114. E. J. , C. T. Moynihan, C. A. Angell. J. Phys. Chem. 77, 1869 (1973). (http://dx.doi.org/10.1021/j100634a011)
 - 115. W. Mackenroth, J. Büttner, E. Ströfer, W. Voigt, F. Bok. Verfahren zur Herstellung von nitrierten Aromaten und deren Mischungen, WO 2010/097453 A1.
 
