Pure Appl. Chem., 2011, Vol. 83, No. 8, pp. 1499-1506
http://dx.doi.org/10.1351/PAC-CON-10-10-17
Published online 2011-04-04
Superelectrophilic chemistry in the gas phase
References
- 1. S. W. . Z. Physikal. Chem. 195, 15 (1996).
 - 2. J. , C. L. Ricketts, D. Schröder. Collect. Czech. Chem. Commun. 73, 811 (2008). (http://dx.doi.org/10.1135/cccc20080811)
 - 3. J. , D. Schröder. J. Am. Chem. Soc. 128, 4208 (2006). (http://dx.doi.org/10.1021/ja0600429)
 - 4a. G. A. , R. H. Schlosbe. J. Am. Chem. Soc. 90, 2726 (1968). (http://dx.doi.org/10.1021/ja01012a066)
 - 4b. G. A. . Angew. Chem., Int. Ed. 32, 767 (1993).
 - 4c. G. A. , N. Hartz, G. Rasul, G. K. S. Prakash. J. Am. Chem. Soc. 115, 6985 (1993). (http://dx.doi.org/10.1021/ja00068a071)
 - 5. G. A. , G. Rasul. Acc. Chem. Res. 30, 245 (1997). (http://dx.doi.org/10.1021/ar960103f)
 - 6a. K. , P. von Ragué Schleyer, H. Schwarz. Angew. Chem., Int. Ed. 28, 1321 (1989).
 - 6b. D. . Phys. Rep. 225, 193 (1993). (http://dx.doi.org/10.1016/0370-1573(93)90006-Y)
 - 6c. K. . Mass Spectrom. Rev. 14, 195 (1995). (http://dx.doi.org/10.1002/mas.1280140304)
 - 6d. D. , H. Schwarz. J. Phys. Chem. A 103, 7385 (1999). (http://dx.doi.org/10.1021/jp991332x)
 - 6e. D. . Phys. Rep. 391, 1 (2004). (http://dx.doi.org/10.1016/j.physrep.2003.10.016)
 - 6f. D. . Angew. Chem., Int. Ed. 43, 1329 (2004). (http://dx.doi.org/10.1002/anie.200301728)
 - 7a. S. D. , M. Manning, S. R. Leone. J. Am. Chem. Soc. 116, 8673 (1994). (http://dx.doi.org/10.1021/ja00098a030)
 - 7b. S. D. . Int. J. Mass Spectrom. 260, 1 (2007).
 - 8a. J. , D. Schröder, H. Schwarz. J. Phys. Chem. A 108, 5060 (2004). (http://dx.doi.org/10.1021/jp049545w)
 - 8b. J. , D. Schröder, H. Schwarz. Chem.—Eur. J. 11, 627 (2005).
 - 8c. P. , D. Schröder, H. Schwarz, J. Roithová. Int. J. Mass Spectrom. 277, 107 (2008).
 - 9. J. , D. Schröder, P. Gruene, T. Weiske, H. Schwarz. J. Phys. Chem. A 110, 2970 (2006). (http://dx.doi.org/10.1021/jp0545288)
 - 10a. J. , J. Žabka, D. Ascenzi, P. Franceschi, C. L. Ricketts, D. Schröder. Chem. Phys. Lett. 423, 254 (2007). (http://dx.doi.org/10.1016/j.cplett.2006.03.083)
 - 10b. J. , D. Schröder. Chem.—Eur. J. 13, 2893 (2007). (http://dx.doi.org/10.1002/chem.200600913)
 - 11. J. , D. Schröder. Phys. Chem. Chem. Phys. 9, 731 (2007). (http://dx.doi.org/10.1039/b615648g)
 - 12. C. L. , D. Schröder, C. Alcaraz, J. Roithová. Chem.—Eur. J. 14, 4779 (2008). (http://dx.doi.org/10.1002/chem.200800524)
 - 13. D. , J. Roithová, D. Schröder, E. L. Zins, C. Alcaraz. J. Phys. Chem. A 113, 11204 (2009). (http://dx.doi.org/10.1021/jp904859g)
 - 14. Coulomb barriers can be easily understood from the side of the products as an energy barrier associated with the reactions of two singly charged ions (i.e., an energy barrier, which is exposed to two singly charge ions, while they are approaching).
 - 15. J. , C. L. Ricketts, D. Schröder, S. D. Price. Angew. Chem., Int. Ed. 46, 9316 (2007). (http://dx.doi.org/10.1002/anie.200704286)
 - 16. M. J. , V. G. Anicich. Mass Spectrom. Rev. 26, 281 (2007). (http://dx.doi.org/10.1002/mas.20117)
 - 17. J. , C. L. Ricketts, D. Schröder. Int. J. Mass Spectrom. 280, 32 (2009).
 - 18. V. , J. H. Waite, T. E. Cravens, S. W. Bougher, I. P. Robertson, J. M. Bell. J. Geophys. Res. Space Phys. A 113, 11314 (2008). (http://dx.doi.org/10.1029/2008JA013078)
 - 19. J. , D. Schröder, J. Loos, H. Schwarz, H.-C. Jankowiak, R. Berger, R. Thissen, O. Dutuit. J. Chem. Phys. 122, 094306 (2005). (http://dx.doi.org/10.1063/1.1856916)
 - 20. T. , E. F. Cromwell, Y. T. Lee, A. H. Kung. J. Chem. Phys. 91, 6006 (1989). (http://dx.doi.org/10.1063/1.457417)
 - 21. J. , H. Schwarz, D. Schröder. Chem.—Eur. J. 15, 9995 (2009). (http://dx.doi.org/10.1002/chem.200901652)
 - 22a. R. E. , F. T. Smith, E. Bauer. Appl. Opt. 10, 1848 (1971). (http://dx.doi.org/10.1364/AO.10.001848)
 - 22b. A. , R. E. Olson. Phys. Chem. 13, 1312 (1976).
 - 22c. S. A. , S. D. Price, S. R. Leone. J. Chem. Phys. 98, 280 (1993). (http://dx.doi.org/10.1063/1.464673)
 - 22d. Z. . Int. Rev. Phys. Chem. 15, 299 (1996). (http://dx.doi.org/10.1080/01442359609353186)
 - 23. J. , D. Schröder. Angew. Chem., Int. Ed. 48, 8788 (2009). (http://dx.doi.org/10.1002/anie.200903706)
 - 25. G. K. , D. K. Bohme. J. Phys. Chem. Lett. 1, 41 (2010). (http://dx.doi.org/10.1021/jz900009q)
 - 25a. D. , P. Tosi, J. Roithová, C. L. Ricketts, D. Schröder, J. F. Lockyear, M. A. Parkes, S. D. Price. Phys. Chem. Chem. Phys. 10, 7121 (2008). (http://dx.doi.org/10.1039/b810398d)
 - 25b. D. , P. Tosi, J. Roithová, D. Schröder. Chem. Commun. 4055 (2008). (http://dx.doi.org/10.1039/b811115d)
 - 25c. J. F. , K. Douglas, S. D. Price, M. Karwowska, K. J. Fijalkowski, W. Grochala, M. Remeš, J. Roithová, D. Schröder. J. Phys. Chem. Lett. 1, 358 (2010). (http://dx.doi.org/10.1021/jz900274p)
 
