Pure Appl. Chem., 2012, Vol. 84, No. 12, pp. 2619-2628
http://dx.doi.org/10.1351/PAC-CON-11-12-05
Published online 2012-05-27
Peculiarities of axial and radial Ge–Si heterojunction formation in nanowires: Monte Carlo simulation
References
- 1. O. , R. Agarwal, W. Lu. Nano Today 3, 12 (2008). (http://dx.doi.org/10.1016/S1748-0132(08)70061-6)
 - 2. Y. , F. Qian, J. Xiang, C. M. Lieber. Mater. Today 9, 18 (2006). (http://dx.doi.org/10.1016/S1369-7021(06)71650-9)
 - 3. J.-S. , B. Ryu, C.-Y. Moon, K. J. Chang. Nano Lett. 10, 116 (2010). (http://dx.doi.org/10.1021/nl9029972)
 - 4. J. , K. A. Dick, P. Caroff, M. E. Messing, J. Bolinsson, K. Deppert, L. Samuelson. J. Phys. Chem. C 114, 3837 (2010). (http://dx.doi.org/10.1021/jp910821e)
 - 5. N. D. , P. Werner, G. Gerth, L. Schubert, L. Sokolov, U. Gosele. J. Cryst. Growth 290, 6 (2006). (http://dx.doi.org/10.1016/j.jcrysgro.2005.12.096)
 - 6. T. E. , P. Nimmatoori, K.-K. Lew, L. Pan, J. M. Redwing, E. C. Dickey. Nano Lett. 8, 1246 (2008). (http://dx.doi.org/10.1021/nl072849k)
 - 7. R. , V. Poydenot, T. Devillers, V. Favre-Nicolin, P. Gentile, A. Barski. Appl. Phys. Lett. 89, 153129 (2006). (http://dx.doi.org/10.1063/1.2360225)
 - 8. I. A. , A. F. Marshall, P. C. McIntyre. Nano Lett. 9, 3715 (2009). (http://dx.doi.org/10.1021/nl9018148)
 - 9. L. J. , M. S. Gudiksen, Ch. M. Lieber. Philos. Trans. R. Soc. London, Ser. A 362, 1247 (2004).
 - 10. Ch. , Sh. Shehata, C. Fradin, R. LaPierre, Ch. Couteau, G. Weihs. Nano Lett. 7, 2584 (2007). (http://dx.doi.org/10.1021/nl070874k)
 - 11. M. J. , S. K. Lim, M. J. Smith, L. F. Allard, S. Gradecak. Appl. Phys. Lett. 93, 151917 (2008). (http://dx.doi.org/10.1063/1.3002299)
 - 12. M. A. , G. Immink, Th. de Smet, M. T. Borgstrom, E. P. A. M. Bakkers. J. Am. Chem. Soc. 128, 1353 (2006). (http://dx.doi.org/10.1021/ja057157h)
 - 13. Ch. M. . Nano Lett. 2, 81 (2002). (http://dx.doi.org/10.1021/nl020289d)
 - 14. Y. , R. Fan, P. Yang. Nano Lett. 2, 83 (2002). (http://dx.doi.org/10.1021/nl0156888)
 - 15. G. , J. Xiang, N. Kharche, G. Klimeck, Ch. M. Lieber, M. Lundstrom. Nano Lett. 7, 642 (2007). (http://dx.doi.org/10.1021/nl062596f)
 - 16. J. , W. Lu, Y. Hu, Y. Wu, H. Yan, Ch. M. Lieber. Nature 441, 489 (2006). (http://dx.doi.org/10.1038/nature04796)
 - 17. Y. , J. Xiang, G. Liang, H. Yan, Ch. M. Lieber. Nano Lett. 8, 925 (2008). (http://dx.doi.org/10.1021/nl073407b)
 - 18. Y. , H. H. Churchill, D. J. Reilly, J. Xiang, Ch. M. Lieber, Ch. M. Marcus. Nat. Nanotechnol. 2, 622 (2007). (http://dx.doi.org/10.1038/nnano.2007.302)
 - 19. J.-E. , Ch.-B. Jin, Ch.-J. Kim, M.-H. Jo. Nano Lett. 6, 2679 (2006). (http://dx.doi.org/10.1021/nl0614821)
 - 20. D. J. . Semicond. Sci. Technol. 19, R75 (2004). (http://dx.doi.org/10.1088/0268-1242/19/10/R02)
 - 21. R. S. , W. C. Ellis. Appl. Phys. Lett. 4, 89 (1964). (http://dx.doi.org/10.1063/1.1753975)
 - 22. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak. Binary Alloy Phase Diagrams, ASM International, Material Park, OH (1990).
 - 23. E. , P. Sutter. Nano Lett. 8, 411 (2008). (http://dx.doi.org/10.1021/nl0719630)
 - 24. D. , P. Perrot. J. Nano Res. 4, 135 (2008).
 - 25. K. M. , D. Ferrer, E. Tutuc, S. K. Banerjee. Appl. Phys. Lett. 95, 033101 (2009). (http://dx.doi.org/10.1063/1.3173811)
 - 26. L. J. , M. S. Gudiksen, D. Wang, Ch. M. Lieber. Nature 420, 57 (2002). (http://dx.doi.org/10.1038/nature01141)
 - 27. Y. , J. T. Smith, J. Appenzeller, Ch. Yang. Nano Lett. 11, 1406 (2011). (http://dx.doi.org/10.1021/nl1031138)
 - 28. I. A. , A. F. Marshall, P. C. McIntyre. Nano Lett. 8, 4081 (2008). (http://dx.doi.org/10.1021/nl802408y)
 - 29. H.-K. , S.-Ch. Lee. Appl. Phys. Lett. 97, 251912 (2010). (http://dx.doi.org/10.1063/1.3531631)
 - 30. D. , M. Sarret, K. Kis-Sion, T. Mohammed-Brahim, P. Duverneuil. Semicond. Sci. Technol. 14, 173 (1999). (http://dx.doi.org/10.1088/0268-1242/14/2/012)
 - 31. N. , T. Y. Tan, U. Gosele. Appl. Phys. A 90, 591 (2008). (http://dx.doi.org/10.1007/s00339-007-4376-z)
 - 32. C.-Y. , M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E. A. Stach, F. M. Ross. Science 326, 1247 (2009). (http://dx.doi.org/10.1126/science.1178606)
 - 33. J. L. , E. R. Hemesath, D. E. Perea, L. J. Lauhon. J. Mater. Chem. 19, 849 (2009). (http://dx.doi.org/10.1039/b817391e)
 - 34. D. E. , N. Li, R. M. Dickerson, A. Misra, S. T. Picraux. Nano Lett. 11, 3117 (2011). (http://dx.doi.org/10.1021/nl201124y)
 - 35. A. V. , K. Yu. Zinchenko, N. L. Shwartz, Z. Sh. Yanovitskaya. Nanotechnol. Russia 4, 215 (2009). (http://dx.doi.org/10.1134/S1995078009030094)
 - 36. A. G. , I. G. Neizvestny, N. L. Shwartz. Pure Appl. Chem. 82, 2017 (2010). (http://dx.doi.org/10.1351/PAC-CON-09-12-03)
 - 37. S. , J. Tersoff, M. C. Reuter, F. M. Ross. Phys. Rev. Lett. 96, 096105 (2006). (http://dx.doi.org/10.1103/PhysRevLett.96.096105)
 - 38. B. . Surf. Sci. Rep. 43, 127 (2001). (http://dx.doi.org/10.1016/S0167-5729(01)00012-7)
 - 39. V. , B. Voigtlander. Phys. Rev. B 69, 125331 (2004). (http://dx.doi.org/10.1103/PhysRevB.69.125331)
 - 40. A. V. , I. G. Neizvestny, I. A. Reizvikh, K. N. Romanyuk, S. A. Teys, N. L. Shwartz, Z. Sh. Yanovitskaya. Semiconductors 39, 967 (2005). (http://dx.doi.org/10.1134/1.2010695)
 - 41. F. . Phys. Rev. B 74, 121302(R) (2006). (http://dx.doi.org/10.1103/PhysRevB.74.121302)
 - 42a. L. Pauling. The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY (1960).
 - 42b. L. Pauling. General Chemistry, Dover Publications, New York (1988).
 
