Pure Appl. Chem., 2013, Vol. 85, No. 5, pp. 941-956
http://dx.doi.org/10.1351/PAC-CON-12-09-14
Published online 2013-04-09
Recent catalytic approaches to chemical synthesis from carbon feedstocks*
References
- 1a. P. , N. Eghbali. Chem. Soc. Rev. 39, 301 (2010). (http://dx.doi.org/10.1039/b918763b)
- 1b. C. J. , B. M. Trost. Proc. Natl. Acad. Sci. USA 105, 13197 (2008). (http://dx.doi.org/10.1073/pnas.0804348105)
- 2. E. J. Corey, X.-M. Cheng. The Logic of Chemical Synthesis, John Wiley, New York (1989).
- 3. T. , P. S. Baran, R. W. Hoffmann. Chem. Soc. Rev. 38, 3010 (2009). (http://dx.doi.org/10.1039/b821200g)
- 4. L. Kollár. Modern Carbonylation Methods, Wiley-VCH, Weinheim (2008).
- 5. C. Godard, A. Ruiz, M. Diéguez, O. Pàmies, C. Claver. In Catalytic Asymmetric Synthesis, 3rd ed., I. Ojima (Ed.), pp. 799–838, John Wiley, Hoboken (2010).
- 6a. T. P. , C. R. Landis, S. L. Freed, J. Klosin, K. A. Abboud. J. Am. Chem. Soc. 127, 5040 (2005). (http://dx.doi.org/10.1021/ja050148o)
- 6b. G. M. , J. A. Fuentes, C. J. Cobley, M. L. Clarke. Angew. Chem., Int. Ed. 51, 2477 (2012). (http://dx.doi.org/10.1002/anie.201108203)
- 6c. X. , S. L. Buchwald. J. Am. Chem. Soc. 133, 19080 (2011). (http://dx.doi.org/10.1021/ja2092689)
- 7. For reviews, see.
- 7a. K. L. . ACS Catal. 1, 877 (2011). (http://dx.doi.org/10.1021/cs2002302)
- 7b. K. L. , X. Sun, A. D. Worthy. Synlett 321 (2012); for recent applications to other catalytic systems, see. (http://dx.doi.org/10.1055/s-0031-1290321)
- 7c. R. B. , S. J. Coles, M. B. Hursthouse, M. E. Limmert. Angew. Chem., Int. Ed. 42, 112 (2003). (http://dx.doi.org/10.1002/anie.200390037)
- 7d. Y. J. , J.-W. Park, C.-H. Jun. Acc. Chem. Res. 41, 222 (2008). (http://dx.doi.org/10.1021/ar700133y)
- 7e. C. U. , B. Breit. Angew. Chem., Int. Ed. 49, 967 (2010). (http://dx.doi.org/10.1002/anie.200905949)
- 7f. M. J. , D. J. Schipper, P. J. Ng, J. Moran, A. M. Beauchemin. J. Am. Chem. Soc. 133, 20100 (2011). (http://dx.doi.org/10.1021/ja208867g)
- 7g. A. D. , X. Sun, K. L. Tan. J. Am. Chem. Soc. 134, 7321 (2012). (http://dx.doi.org/10.1021/ja3027086)
- 7h. X. , A. D. Worthy, K. L. Tan. Angew. Chem., Int. Ed. 50, 8167 (2011). (http://dx.doi.org/10.1002/anie.201103470)
- 7i. S. K. , M. M. Coulter, V. M. Dong. Chem. Sci. 3, 355 (2012). (http://dx.doi.org/10.1039/c1sc00634g)
- 8. For a highlight, see: C. S. , V. M. Dong. Angew. Chem., Int. Ed. 50, 809 (2011). (http://dx.doi.org/10.1002/anie.201006489)
- 9. A. D. , C. L. Joe, T. E. Lightburn, K. L. Tan. J. Am. Chem. Soc. 132, 14757 (2010). (http://dx.doi.org/10.1021/ja107433h)
- 10. For a review on lactone synthesis, see: C. S. Yeung, P. K. Dornan, V. M. Dong. In Catalyzed Carbon-Heteroatom Bond Formation, A. K. Yudin (Ed.), pp. 35–68, Wiley-VCH, Weinheim (2010).
- 11. H. , N. Hamel. J. Am. Chem. Soc. 112, 2803 (1990). (http://dx.doi.org/10.1021/ja00163a053)
- 12a. M. , A. Dibenedetto. Dalton Trans. 2975 (2007). (http://dx.doi.org/10.1039/b700658f)
- 12b. T. , J.-C. Choi, H. Yasuda. Chem. Rev. 107, 2365 (2007). (http://dx.doi.org/10.1021/cr068357u)
- 13. For selected reviews, see.
- 13a. K. , C.-L. Sun, Z.-J. Shi. Chem. Soc. Rev. 40, 2435 (2011). (http://dx.doi.org/10.1039/c0cs00129e)
- 13b. W. . Coord. Chem. Rev. 153, 257 (1996). (http://dx.doi.org/10.1016/0010-8545(95)01226-5)
- 14a. M. , C. F. Nobile, V. G. Albano, E. Forni, M. Manassero. J. Chem. Soc., Chem. Commun. 636 (1975). (http://dx.doi.org/10.1039/c39750000636)
- 14b. A. , P. W. Jolly, C. Krueger, M. J. Romao. Z. Naturforsch. B 40, 484 (1985).
- 15a. C. S. , V. M. Dong. J. Am. Chem. Soc. 130, 7826 (2008); for a related account, see. (http://dx.doi.org/10.1021/ja803435w)
- 15b. H. , M. Jang, K. Hirano, H. Yorimitsu, K. Oshima. Org. Lett. 10, 2681 (2008). (http://dx.doi.org/10.1021/ol800764u)
- 16a. C. M. , J. B. Johnson, T. Rovis. J. Am. Chem. Soc. 130, 14936 (2008). (http://dx.doi.org/10.1021/ja8062925)
- 16b. A. , R. Martín. J. Am. Chem. Soc. 131, 15974 (2009). (http://dx.doi.org/10.1021/ja905264a)
- 16c. J. , N. Iwasawa. J. Am. Chem. Soc. 130, 15254 (2008). (http://dx.doi.org/10.1021/ja806677w)
- 16d. T. , K. Nogi, T. Xu, J. Terao, Y. Tsuji. J. Am. Chem. Soc. 134, 9106 (2012). (http://dx.doi.org/10.1021/ja303514b)
- 16e. M. , M. Mori. J. Am. Chem. Soc. 124, 10008 (2002). (http://dx.doi.org/10.1021/ja026620c)
- 17a. K. , M. Aoki, J. Takaya, N. Iwasawa. J. Am. Chem. Soc. 128, 8706 (2006). (http://dx.doi.org/10.1021/ja061232m)
- 17b. T. , M. Nishiura, Z. Hou. Angew. Chem., Int. Ed. 47, 5792 (2008). (http://dx.doi.org/10.1002/anie.200801857)
- 17c. I. I. F. , S. P. Nolan. J. Am. Chem. Soc. 132, 8858 (2010). (http://dx.doi.org/10.1021/ja103429q)
- 17d. D. , Y. Zhang. Proc. Natl. Acad. Sci. USA 107, 20184 (2010). (http://dx.doi.org/10.1073/pnas.1010962107)
- 18. H. , J. Takaya, N. Iwasawa. J. Am. Chem. Soc. 133, 1251 (2011). (http://dx.doi.org/10.1021/ja109097z)
- 19. G. A. . Angew. Chem., Int. Ed. 44, 2636 (2005). (http://dx.doi.org/10.1002/anie.200462121)
- 20. J. , A. Preetz, R. A. Mesch, M. J. Krische. Nat. Chem. 3, 287 (2011). (http://dx.doi.org/10.1038/nchem.1001)
- 21. H. , M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert, E. Fujita, D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. Lyons, L. E. Manzer, T. J. Marks, K. Morokuma, K. N. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen, G. A. Somorjai, P. C. Stair, B. R. Stults, W. Tumas. Chem. Rev. 101, 953 (2001). (http://dx.doi.org/10.1021/cr000018s)
- 22. For a review on arene functionalization, see.
- 22a. N. , M. N. Hopkinson, J. Wencel-Delord, F. Glorius. Angew. Chem., Int. Ed. 51, 10236 (2012); (http://dx.doi.org/10.1002/anie.201203269)
- 22b. for selected reviews on C–H functionalization, see: K. , D. Sames. Science 312, 67 (2006). (http://dx.doi.org/10.1126/science.1114731)
- 22c. R. G. . Nature 446, 391 (2007). (http://dx.doi.org/10.1038/446391a)
- 22d. W. R. , P. S. Baran. Chem. Soc. Rev. 40, 1976 (2011). (http://dx.doi.org/10.1039/c0cs00182a)
- 23. For selected reviews on direct arylation, see.
- 23a. D. , M. E. Scott, M. Lautens. Chem. Rev. 107, 174 (2007). (http://dx.doi.org/10.1021/cr0509760)
- 23b. L. , R. Vicente, A. Kapdi. Angew. Chem., Int. Ed. 48, 9792 (2009). (http://dx.doi.org/10.1002/anie.200902996)
- 23c. A. , W. Liu, C. Liu, M. Chen. Dalton Trans. 39, 10352 (2010). (http://dx.doi.org/10.1039/c0dt00486c)
- 24. M. , K. Fagnou. J. Am. Chem. Soc. 128, 16496 (2006). (http://dx.doi.org/10.1021/ja067144j)
- 25. For a discussion on CMD, see.
- 25a. S. I. , D. Lapointe, K. Fagnou. J. Org. Chem. 77, 658 (2012). (http://dx.doi.org/10.1021/jo202342q)
- 25b. D. , K. Fagnou. Chem. Lett. 39, 1118 (2010). (http://dx.doi.org/10.1246/cl.2010.1118)
- 25c. S. I. , D. Lapointe, K. Fagnou. J. Am. Chem. Soc. 130, 10848 (2008); (http://dx.doi.org/10.1021/ja802533u)
- 25d. for a review on carboxylate-assisted C–H activations, see: L. . Chem. Rev. 111, 1315 (2011); (http://dx.doi.org/10.1021/cr100412j)
- 25e. for recent studies on alternative mechanisms involving cooperative catalysis, see: Y. , F. Barrios-Landeros, J. F. Hartwig. J. Am. Chem. Soc. 134, 3683 (2012). (http://dx.doi.org/10.1021/ja2122156)
- 25f. Y. , J. F. Hartwig. J. Am. Chem. Soc. 133, 3308 (2011). (http://dx.doi.org/10.1021/ja1113936)
- 25g. S. I. . Organometallics 31, 4631 (2012). (http://dx.doi.org/10.1021/om300230b)
- 25h. A. , J. Flygare, A. T. Miller, G. Winkel, D. H. Ess. Org. Lett. 14, 3680 (2012). (http://dx.doi.org/10.1021/ol301521n)
- 25i. M. , Y. Nakamura, Q. Wang, F. Ozawa. Organometallics 31, 4810 (2012). (http://dx.doi.org/10.1021/om300367k)
- 26. For reviews, see.
- 26a. C. S. , V. M. Dong. Chem. Rev. 111, 1215 (2011). (http://dx.doi.org/10.1021/cr100280d)
- 26b. C.-J. . Acc. Chem. Res. 42, 335 (2009). (http://dx.doi.org/10.1021/ar800164n)
- 26c. C. J. . Chem. Asian J. 5, 436 (2010). (http://dx.doi.org/10.1002/asia.200900487)
- 27. For reviews on oxidative biaryl synthesis, see.
- 27a. C. S. Yeung, N. Borduas, V. M. Dong. In Cross Couplings & Heck Reactions, M. Larhed (Ed.), Georg Thieme (2012) in press.
- 27b. J. A. . Chem. Soc. Rev. 39, 540 (2010). (http://dx.doi.org/10.1039/b907809f)
- 27c. G. P. , L. M. Batemann. Chem. Soc. Rev. 38, 2447 (2009). (http://dx.doi.org/10.1039/b805701j)
- 27d. S.-L. , J.-B. Xia. Top. Curr. Chem. 292, 165 (2010). (http://dx.doi.org/10.1007/128_2009_18)
- 27e. S. H. , J. Y. Kim, J. Kwak, S. Chang. Chem. Soc. Rev. 5068 (2011). (http://dx.doi.org/10.1039/c1cs15082k)
- 28a. D. R. , K. Fagnou. Science 316, 1172 (2007). (http://dx.doi.org/10.1126/science.1141956)
- 28b. K. L. , M. S. Sanford. J. Am. Chem. Soc. 129, 11904 (2007). (http://dx.doi.org/10.1021/ja074395z)
- 28c. B.-J. , S.-L. Tian, Z. Fang, Z.-J. Shi. Angew. Chem., Int. Ed. 47, 1115 (2008). (http://dx.doi.org/10.1002/anie.200704092)
- 28d. S. H. , S. J. Hwang, S. Chang. J. Am. Chem. Soc. 130, 9254 (2008). (http://dx.doi.org/10.1021/ja8026295)
- 28e. X. , D. Leow, J.-Q. Yu. J. Am. Chem. Soc. 133, 13864 (2011). (http://dx.doi.org/10.1021/ja206572w)
- 29. For an example of Rh-catalyzed oxidative cross-coupling, see: J. , C. Nimphius, F. W. Patureau, F. Glorius. Angew. Chem., Int. Ed. 51, 2247 (2012). (http://dx.doi.org/10.1002/anie.201107842)
- 30a. X. , C. S. Yeung, V. M. Dong. J. Am. Chem. Soc. 132, 5837 (2010). (http://dx.doi.org/10.1021/ja100783c)
- 30b. C. S. , X. Zhao, N. Borduas, V. M. Dong. Chem. Sci. 1, 331 (2010). (http://dx.doi.org/10.1039/c0sc00231c)
- 30c. C. S. , V. M. Dong. Synlett 974 (2011); for a related account, see.
- 30d. A. E. , S. L. Buchwald. Org. Lett. 10, 2721 (2008). (http://dx.doi.org/10.1021/ol8008792)
- 31. For selected reviews on methane monooxygenase, see.
- 31a. M. , D. A. Kopp, M. H. Sazinsky, J. L. Blazyk, J. Müller, S. J. Lippard. Angew. Chem., Int. Ed. 40, 2782 (2001). (http://dx.doi.org/10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P)
- 31b. S. , E. Resiner, S. J. Lippard. Chem. Soc. Rev. 39, 2768 (2010). (http://dx.doi.org/10.1039/c003079c)
- 32. For a review, see: I. A. I. , J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig. Chem. Rev. 110, 890 (2010). (http://dx.doi.org/10.1021/cr900206p)
- 33a. J.-Y. , M. K. Tse, D. Holmes, R. E. Maleczka Jr., M. R. Smith III. Science 295, 305 (2002). (http://dx.doi.org/10.1126/science.1067074)
- 33b. T. , J. Takagi, J. F. Hartwig, N. Miyaura. Angew. Chem., Int. Ed. 41, 3056 (2002). (http://dx.doi.org/10.1002/1521-3773(20020816)41:16<3056::AID-ANIE3056>3.0.CO;2-#)
- 33c. H. , J. F. Hartwig. Angew. Chem., Int. Ed. 38, 3391 (1999). (http://dx.doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3391::AID-ANIE3391>3.0.CO;2-N)
- 33d. H. , S. Schlecht, T. C. Semple, J. F. Hartwig. Science 287, 1995 (2000). (http://dx.doi.org/10.1126/science.287.5460.1995)
- 33e. J. M. , J. D. Lawrence, K. Kawamura, C. Incarvito, J. F. Hartwig. J. Am. Chem. Soc. 128, 13684 (2006). (http://dx.doi.org/10.1021/ja064092p)
- 33f. C. W. , J. F. Hartwig. J. Am. Chem. Soc. 134, 12422 (2012). (http://dx.doi.org/10.1021/ja305596v)
- 34. For selected reviews, see.
- 34a. M. , M. P. Mehn, M. P. Jensen, L. Que Jr. Chem. Rev. 104, 939 (2004). (http://dx.doi.org/10.1021/cr020628n)
- 34b. M. , K. Chen, L. Que Jr. Coord. Chem. Rev. 200, 517 (2000). (http://dx.doi.org/10.1016/S0010-8545(00)00320-9)
- 34c. E. P. , K. P. Bryliakov. Coord. Chem. Rev. 256, 1418 (2012). (http://dx.doi.org/10.1016/j.ccr.2012.04.005)
- 35. T. , L. Rout. Coord. Chem. Rev. 252, 134 (2008). (http://dx.doi.org/10.1016/j.ccr.2007.04.003)
- 36. For recent examples of Fe-catalyzed oxygenations, see.
- 36a. M. S. , M. C. White. Science 318, 783 (2007). (http://dx.doi.org/10.1126/science.1148597)
- 36b. M. S. , M. C. White. Science 327, 566 (2010). (http://dx.doi.org/10.1126/science.1183602)
- 37a. Y. , C.-J. Li. Eur. J. Org. Chem. 4654 (2007). (http://dx.doi.org/10.1002/ejoc.200700686)
- 37b. G. , L. Zhao, C.-J. Li. Angew. Chem., Int. Ed. 47, 6278 (2008). (http://dx.doi.org/10.1002/anie.200801544)
- 37c. Q. , D. Thevenet, P. S. Baran. J. Am. Chem. Soc. 134, 2547 (2012). (http://dx.doi.org/10.1021/ja212020b)
- 37d. S. , C. R. Pitts, D. C. Miller, N. Haselton, M. G. Holl, E. Urheim, T. Lectka. Angew. Chem., Int. Ed. 51, 10580 (2012); for a related example of fluorination, see. (http://dx.doi.org/10.1002/anie.201203642)
- 37e. W. , X. Huang, M.-J. Cheng, R. J. Nielson, W. A. Goddard III, J. T. Groves. Science 337, 1322 (2012). (http://dx.doi.org/10.1126/science.1222327)
- 38. For selected reviews, see.
- 38a. M. P. , R. Duffy, M. Ratnikov, L. Zhou. Chem. Rev. 110, 704 (2010). (http://dx.doi.org/10.1021/cr900239n)
- 38b. H. M. L. , R. E. J. Beckwith. Chem. Rev. 103, 2861 (2003). (http://dx.doi.org/10.1021/cr0200217)
- 39a. H. M. L. , T. Hansen, M. R. Churchill. J. Am. Chem. Soc. 122, 3063 (2000). (http://dx.doi.org/10.1021/ja994136c)
- 39b. H. M. L. , T. Hansen. J. Am. Chem. Soc. 119, 9075 (1997). (http://dx.doi.org/10.1021/ja971915p)
- 40. For selected reviews, see.
- 40a. J. M. , X.-t. Jiang. Curr. Org. Chem. 7, 369 (2003). (http://dx.doi.org/10.2174/1385272033372851)
- 40b. J. A. , P. M. Henry. Angew. Chem., Int. Ed. 48, 9038 (2009). (http://dx.doi.org/10.1002/anie.200902194)
- 41. For selected reviews, see.
- 41a. P. , D. Sémeril, D. Matt, M. J. Chetcuti, P. Lutz. Dalton Trans. 515 (2007). (http://dx.doi.org/10.1039/b615259g)
- 41b. J. . Chem. Rev. 91, 613 (1991). (http://dx.doi.org/10.1021/cr00004a007)
- 42a. R. , A. C. Gutierrez, T. F. Jamison. J. Am. Chem. Soc. 133, 19020 (2011). (http://dx.doi.org/10.1021/ja209235d)
- 42b. R. K. , T. V. RajanBabu. J. Am. Chem. Soc. 132, 3295 (2010). (http://dx.doi.org/10.1021/ja1004703)
- 42c. V. , M. S. Sigman. J. Am. Chem. Soc. 134, 11372 (2012). (http://dx.doi.org/10.1021/ja304344h)
- 43. For selected reviews, see.
- 43a. I. P. , A. V. Cheprakov. Chem. Rev. 100, 3009 (2000). (http://dx.doi.org/10.1021/cr9903048)
- 43b. J. , J. Muzart. Chem. Rev. 111, 1170 (2011). (http://dx.doi.org/10.1021/cr100209d)
- 43c. V. , C. Sirlin, M. Pfeffer. Chem. Rev. 102, 1731 (2002). (http://dx.doi.org/10.1021/cr0104330)
- 43d. J. , T. Rovis. Synlett 1189 (2009).
- 44a. G. , P. Teo, Z. K. Wickens, R. H. Grubbs. Science 333, 1609 (2011). (http://dx.doi.org/10.1126/science.1208685)
- 44b. A. L. , H. N. Nguyen, K. C. Hultzsch. Angew. Chem., Int. Ed. 49, 8984 (2010). (http://dx.doi.org/10.1002/anie.201004570)
- 44c. B. C. , V. A. Schmidt, E. J. Alexanian. J. Am. Chem. Soc. 133, 13320 (2011). (http://dx.doi.org/10.1021/ja206306f)
- 44d. J. L. , J. E. Harang, V. I. Timokhin, N. R. Anastasi, S. S. Stahl. J. Am. Chem. Soc. 127, 2868 (2005). (http://dx.doi.org/10.1021/ja0433020)
- 44e. M. , C. Le, V. M. Dong. J. Am. Chem. Soc. 134, 15022 (2012). (http://dx.doi.org/10.1021/ja305593y)
- 44f. B.-F. , Y.-H. Zhang, J. K. Lam, D.-H. Wang, J.-Q. Yu. J. Am. Chem. Soc. 132, 460 (2010). (http://dx.doi.org/10.1021/ja909571z)
- 45. J. R. , E. Yamaguchi, E. L. McInturff, M. J. Krische. Science 336, 324 (2012). (http://dx.doi.org/10.1126/science.1219274)
- 46. For a recent review, see.
- 46a. J. M. R. . Chem. Soc. Rev. 40, 102 (2011); for selected examples, see. (http://dx.doi.org/10.1039/b913880n)
- 46b. D. A. , D. W. C. MacMillan. Science 322, 77 (2008). (http://dx.doi.org/10.1126/science.1161976)
- 46c. M. A. , M. E. Anzovino, J. Du, T. P. Yoon. J. Am. Chem. Soc. 130, 12886 (2008). (http://dx.doi.org/10.1021/ja805387f)
- 47. J. D. , J. W. Tucker, M. D. Konieczynska, C. R. J. Stephenson. J. Am. Chem. Soc. 133, 4160 (2011). (http://dx.doi.org/10.1021/ja108560e)
- 48a. M. S. , M. C. White. J. Am. Chem. Soc. 126, 1346 (2004). (http://dx.doi.org/10.1021/ja039107n)
- 48b. S. A. , A. R. Mazzotti, M. C. White. J. Am. Chem. Soc. 131, 11701 (2009). (http://dx.doi.org/10.1021/ja903939k)
- 48c. M. S. , N. Prabagaran, N. A. Labenz, M. C. White. J. Am. Chem. Soc. 127, 6970 (2005). (http://dx.doi.org/10.1021/ja0500198)
- 48d. A. J. , M. C. White. J. Am. Chem. Soc. 130, 14090 (2008). (http://dx.doi.org/10.1021/ja806867p)
- 49. E. M. , M. C. White. Nat. Chem. 1, 547 (2009). (http://dx.doi.org/10.1038/nchem.351)
- 50. For selected reviews, see.
- 50a. A. , S. Iborra, A. Velty. Chem. Rev. 107, 2411 (2007). (http://dx.doi.org/10.1021/cr050989d)
- 50b. A. J. , C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski. Science 311, 484 (2006). (http://dx.doi.org/10.1126/science.1114736)
- 50c. C. H. , J. Rass-Hansen, C. C. Marsden, E. Taarning, K. Egeblad. ChemSusChem 1, 283 (2008). (http://dx.doi.org/10.1002/cssc.200700168)
- 51. For a review, see: C. F. , S. Bräse. Angew. Chem., Int. Ed. 47, 9389 (2008). (http://dx.doi.org/10.1002/anie.200803720)
- 52. J. B. , R. T. Raines. J. Am. Chem. Soc. 131, 1979 (2009). (http://dx.doi.org/10.1021/ja808537j)
- 53. For a review, see: M. E. , E. Bogel-Lukasik, R. Bogel-Lukasik. Chem. Rev. 111, 397 (2011). (http://dx.doi.org/10.1021/cr100171a)
- 54. H. , J. E. Holladay, H. Brown, Z. C. Zhang. Science 316, 1597 (2007). (http://dx.doi.org/10.1126/science.1141199)
- 55. Y. , J. N. Chheda, J. A. Dumesic. Science 312, 1933 (2006). (http://dx.doi.org/10.1126/science.1126337)
- 56. M. , F. D. Toste. Angew. Chem., Int. Ed. 51, 8082 (2012). (http://dx.doi.org/10.1002/anie.201203877)
- 57. A. , E. C. Escudero-Adán, V. V. Grushin, P. W. N. M. van Leeuwen. Org. Lett. 14, 4014 (2012). (http://dx.doi.org/10.1021/ol3018402)
