Pure Appl. Chem., 2013, Vol. 85, No. 6, pp. 1089-1101
http://dx.doi.org/10.1351/PAC-CON-12-10-11
Published online 2013-04-10
The new world of organic reactions in water
References
- 1a. C.-J. . Chem. Rev. 105, 3095 (2005). (http://dx.doi.org/10.1021/cr030009u)
- 1b. U. M. Lindstroem (Ed.). Organic Reactions in Water, Wiley-Blackwell, Oxford (2007).
- 1c. S. Kobayashi (Ed.). Water in Organic Synthesis (Science of Synthesis), Thieme, Stuttgart (2012).
- 2a. D. C. , R. Breslow. J. Am. Chem. Soc. 102, 7816 (1980). (http://dx.doi.org/10.1021/ja00546a048)
- 2b. H. , T. Nakamura, H. Shinikubo, K. Oshima, K. Omoto, H. Fujimoto. J. Am. Chem. Soc. 122, 11041 (2000). (http://dx.doi.org/10.1021/ja0014281)
- 2c. S. , J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless. Angew. Chem., Int. Ed. 44, 3275 (2005). (http://dx.doi.org/10.1002/anie.200462883)
- 2d. L. , J. Pospech. Org. Lett. 13, 4153 (2011). (http://dx.doi.org/10.1021/ol201563r)
- 2e. T. , M. Sakai, M. Ueno, S. Kobayashi. Org. Biomol. Chem. 10, 7134 (2012). (http://dx.doi.org/10.1039/c2ob26264a)
- 3. S. Kobayashi. In Water in Organic Synthesis (Science of Synthesis), S. Kobayashi (Ed.), pp. 855–867, Thieme, Stuttgart (2012).
- 4. For general overview on allylic amination, see.
- 4a. S. A. Godleski. In Comprehensive Organic Synthesis, Vol. 4, B. M. Trost (Ed.), p. 585, Pergamon, Oxford (1991).
- 4b. M. , K. A. Jørgensen. Chem. Rev. 98, 1689 (1998). (http://dx.doi.org/10.1021/cr970343o)
- 4c. B. M. , D. L. Van Vraken. Chem. Rev. 96, 395 (1996). (http://dx.doi.org/10.1021/cr9409804)
- 4d. B. M. . Chem. Pharm. Bull. 50, 1 (2002). (http://dx.doi.org/10.1248/cpb.50.1)
- 4e. B. M. , M. L. Crawley. Chem. Rev. 103, 2921 (2003). (http://dx.doi.org/10.1021/cr020027w)
- 4f. H. , Y. Takemoto. Synlett 1641 (2005).
- 4g. Z. , S. Ma. Angew. Chem., Int. Ed. 47, 258 (2008). (http://dx.doi.org/10.1002/anie.200605113)
- 5. Recently, growing attention has been paid to direct use of ammonia as a nitrogen source for organic synthesis, see.
- 5a. B. , J. Herwig, M. Beller. Angew. Chem., Int. Ed. 38, 2372 (1999). (http://dx.doi.org/10.1002/(SICI)1521-3773(19990816)38:16<2372::AID-ANIE2372>3.0.CO;2-H)
- 5b. F. , D. Zewge, I. N. Houpis, R. P. Volante. Tetrahedron Lett. 42, 3251 (2001). (http://dx.doi.org/10.1016/S0040-4039(01)00458-0)
- 5c. T. , A. M. Seayad, M. Ahmad, M. Beller. Org. Lett. 4, 2055 (2002). (http://dx.doi.org/10.1021/ol0200605)
- 5d. B. , S. Bhattacharyya, J. S. Williamson. Tetrahedron 60, 1463 (2004). (http://dx.doi.org/10.1016/j.tet.2003.12.024)
- 5e. B. , J. Tiburcio, A. N. Thadani. Chem. Commun. 5551 (2005). (http://dx.doi.org/10.1039/b511411j)
- 5f. Q. , J. F. Hartwig. J. Am. Chem. Soc. 128, 10028 (2006). (http://dx.doi.org/10.1021/ja064005t)
- 5g. D. S. , S. L. Buchwald. J. Am. Chem. Soc. 129, 10354 (2007). (http://dx.doi.org/10.1021/ja074681a)
- 5h. M. J. , A. Leitner, D. J. Weix, S. Ueno, J. F. Hartwig. Org. Lett. 9, 3949 (2007). (http://dx.doi.org/10.1021/ol701562p)
- 5i. C. , M. Ernst, F. van Laar, B. F. Sels, E. Schwab, D. E. De Vos. Angew. Chem., Int. Ed. 47, 1477 (2008). (http://dx.doi.org/10.1002/anie.200704772)
- 5j. C. , D. Milstein. Angew. Chem., Int. Ed. 47, 8661 (2008). (http://dx.doi.org/10.1002/anie.200803229)
- 5k. J. , S. Chang. Chem. Commun. 3052 (2008). (http://dx.doi.org/10.1039/b804637a)
- 5l. N. , M. Taillefer. Angew. Chem., Int. Ed. 48, 337 (2009). See also ref. [10]. (http://dx.doi.org/10.1002/anie.200802569)
- 6. Hartwig reported Ir-catalyzed allylic amination of methyl cinnamyl carbonate using a dioxane solution of ammonia gave the corresponding secondary amine exclusively, see ref. [2h]. After our first report (ref. [4]), his group reported the use of ammonia in enantioselective Ir-catalyzed monoallylation. M. J. , L. M. Stanley, J. F. Hartwig. J. Am. Chem. Soc. 131, 11312 (2009). (http://dx.doi.org/10.1021/ja905059r)
- 7. T. , S. Kobayashi. J. Am. Chem. Soc. 131, 4200 (2009). (http://dx.doi.org/10.1021/ja900328x)
- 8. B. M. , E. Keinan. J. Org. Chem. 44, 3451 (1979). (http://dx.doi.org/10.1021/jo01334a001)
- 9. S. E. , R. Aslanian, J.-E. Bäckvall. Tetrahedron Lett. 26, 1749 (1985). (http://dx.doi.org/10.1016/S0040-4039(00)98329-1)
- 10. Y. , M. Taguchi, M. Toyofuku, H. Hashimoto. Bull. Chem. Soc. Jpn. 57, 3021 (1984). (http://dx.doi.org/10.1246/bcsj.57.3021)
- 11. R. D. , T. Rein, B. Åkermark, P. Helquist. J. Org. Chem. 53, 3845 (1988). (http://dx.doi.org/10.1021/jo00251a035)
- 12. S.-I. , Y. Taniguchi, Y. Imada, Y. Tanigawa. J. Org. Chem. 54, 3292 (1989). (http://dx.doi.org/10.1021/jo00275a011)
- 13. Recent examples, see.
- 13a. R. , O. Tverskoy, G. Helmchen. Angew. Chem., Int. Ed. 45, 5546 (2006). (http://dx.doi.org/10.1002/anie.200601472)
- 13b. C. , M. A. Ariger, P. Moriel, E. M. Carreira. Angew. Chem., Int. Ed. 46, 3139 (2007). See also ref. [1b]. (http://dx.doi.org/10.1002/anie.200700159)
- 14a. M. , K. Hirano, S. Kobayashi. J. Am. Chem. Soc. 126, 7182 (2004). (http://dx.doi.org/10.1021/ja049689o)
- 14b. S. , K. Hirano, M. Sugiura. Chem. Commun. 104 (2005). (http://dx.doi.org/10.1039/b415264f)
- 14c. M. , K. Hirano, S. Kobayashi. Org. Synth. 83, 170 (2005).
- 15. Unpublished.
- 16. D. , H. Tye, C. Eldred, N. W. Alcock, M. Wills. J. Chem. Soc., Perkin Trans. 1 2840 (2001). (http://dx.doi.org/10.1039/b106399p)
- 17a. M. , M. Yabuki, T. Yamagishi, K. Sakai, T. Tsubomura. Chem. Lett. 241 (1996). (http://dx.doi.org/10.1246/cl.1996.241)
- 17b. H. , T. Taiji, T. Ohta, I. Furukawa. Synlett 385 (2001).
- 18. X. , L. Lu, J. Sun. J. Mol. Catal. 41, 245 (1987).
- 19. S. Kobayashi. “The New World of Organic Chemistry Using Water as a Solvent”, presented at the 16th European Symposium on Organic Chemistry, Prague, 14 July 2009.
- 20a. K. , R. Shibuya, Y. Nakahara, N. Germain, T. Ohshima, K. Mashima. Angew. Chem., Int. Ed. 51, 150 (2012); see also. (http://dx.doi.org/10.1002/anie.201106737)
- 20b. M. , Y. Miyamoto, J. Ipposhi, T. Ohshima, K. Mashima. Org. Lett. 9, 3371 (2007). (http://dx.doi.org/10.1021/ol071365s)
- 21. A. Hosomi, K. Miura. In Comprehensive Organometallic Chemistry III, Vol. 9, P. Knochel (Ed.), p. 297, Elsevier, Oxford (2007).
- 22. A. Baba, I. Shibata, M. Yasuda. In Comprehensive Organometallic Chemistry III, Vol. 9, P. Knochel (Ed.), p. 341, Elsevier, Oxford (2007).
- 23. N. Miyaura, Y. Yamamoto. In Comprehensive Organometallic Chemistry III, Vol. 9, P. Knochel (Ed.), p. 145, Elsevier, Oxford (2007).
- 24. R. W. , H.-J. Zei. J. Org. Chem. 46, 1309 (1981). (http://dx.doi.org/10.1021/jo00320a015)
- 25. R. W. , B. Landmann. Chem. Ber. 119, 1039 (1986). (http://dx.doi.org/10.1002/cber.19861190324)
- 26a. J. W. , D. G. Hall. J. Am. Chem. Soc. 124, 11586 (2002). (http://dx.doi.org/10.1021/ja027453j)
- 26b. T. , T. Ahiko, N. Miyaura. J. Am. Chem. Soc. 124, 12414 (2002). (http://dx.doi.org/10.1021/ja0210345)
- 26c. D. G. . Synlett 1644 (2007). (http://dx.doi.org/10.1055/s-2007-980384)
- 27. In the crotylboration of aldehydes, examples to provide 4-substituted homoallylic alcohols via γ‑addition-[3,3]-sigmatropic rearrangement were reported. P. V. , D. Pratihar, D. Biswas. Chem. Commun. 1988 (2005). (http://dx.doi.org/10.1039/b418996e)
- 28. M. , T. Nagano, U. Schneider, T. Hamada, C. Ogawa, S. Kobayashi. J. Am. Chem. Soc. 130, 2914 (2008). (http://dx.doi.org/10.1021/ja710627x)
- 29. S. , T. Endo, U. Schneider, M. Ueno. Chem. Commun. 46, 1260 (2010). (http://dx.doi.org/10.1039/b924527h)
- 30a. T. , J.-R. Schwark, D. Hoppe. Tetrahedron Lett. 30, 7037 (1989). (http://dx.doi.org/10.1016/S0040-4039(01)93417-3)
- 30b. J. A. , K. W. Hinkle. J. Org. Chem. 60, 1920 (1995). (http://dx.doi.org/10.1021/jo00112a005)
- 30c. D. J. , E. J. Thomas. Tetrahedron: Asymmetry 6, 2575 (1995). (http://dx.doi.org/10.1016/0957-4166(95)00337-O)
- 30d. G. W. , D. J. Hallett, E. J. Thomas. Tetrahedron: Asymmetry 6, 2579 (1995). (http://dx.doi.org/10.1016/0957-4166(95)00338-P)
- 31. Crotylzinc·6c complex could be detected by ESI-mass analysis. In the reactions of crotylboronates with benzaldehyde, background (noncatalyzed) reactions seem to be faster. Boron-zinc transmetalation (from 5 to 9) may be slow due to steric reason. More details are under investigation.
- 32a. S. , T. Endo, M. Ueno. Angew. Chem., Int. Ed. 50, 12262 (2011); see also. (http://dx.doi.org/10.1002/anie.201106433)
- 32b. S. , T. Hamada, K. Manabe, S. Kobayashi. J. Am. Chem. Soc. 126, 12236 (2004). (http://dx.doi.org/10.1021/ja047896i)
- 32c. M. , T. Naito, S. Kobayashi. Chem. Lett. 38, 904 (2009). (http://dx.doi.org/10.1246/cl.2009.904)
- 32d. M. , T. Naito, S. Kobayashi. Tetrahedron 66, 1111 (2010). (http://dx.doi.org/10.1016/j.tet.2009.11.018)
- 33. The examples of catalytic, highly enantioselective allylation of aldehydes in aqueous media are very rare. Cf. S. , N. Aoyama, K. Manabe. Chirality 15, 124 (2003) and refs. cited therein. (http://dx.doi.org/10.1002/chir.10154)
- 34. For the bipyridine chiral ligand, see.
- 34a. C. , M. Zehnder, D. Bur. Angew. Chem., Int. Ed. 29, 205 (1990).
- 34b. C. , M. Ewald, M. Felder, G. Schlingloff. Chem. Ber. 125, 1169 (1992). (http://dx.doi.org/10.1002/cber.19921250528)
- 34c. S. , T. Hamada, K. Manabe, S. Kobayashi. Synthesis 2176 (2005).
- 35. Selected examples for the utility of the resulting tertiary homoallylic alcohols.
- 35a. S. , K. Hirano, H. Yorimitsu, K. Oshima. J. Am. Chem. Soc. 128, 2210 (2006). (http://dx.doi.org/10.1021/ja058055u)
- 35b. P. , C. D. Incarvito, J. F. Hartwig. J. Am. Chem. Soc. 128, 9642 (2006). (http://dx.doi.org/10.1021/ja063347w)
- 35c. T. , H. Furukawa, M. Suginome. J. Am. Chem. Soc. 128, 13366 (2006). (http://dx.doi.org/10.1021/ja065588+)
- 36a. K. M. , J. Gavenonis, P. J. Walsh. Angew. Chem., Int. Ed. 41, 3697 (2002). (http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3697::AID-ANIE3697>3.0.CO;2-U)
- 36b. M. , K. Hirata, M. Nishino, A. Yamamoto, A. Baba. J. Am. Chem. Soc. 124, 13442 (2002); key reference for asymmetric In(III) catalysis. (http://dx.doi.org/10.1021/ja0274047)
- 36c. J. , M.-L. Hong, S.-J. Ji, Y.-C. Teo, T.-P. Loh. Chem. Commun. 4217 (2005). (http://dx.doi.org/10.1039/b507768k)
- 37a. S. , K. Fujii, R. Wada, M. Kanai, M. Shibasaki. J. Am. Chem. Soc. 124, 6536 (2002). (http://dx.doi.org/10.1021/ja0262582)
- 37b. M. , H. Yamamoto. J. Am. Chem. Soc. 127, 14556 (2005); stoichiometric method. (http://dx.doi.org/10.1021/ja0553351)
- 37c. N. Z. , B. M. Hackman, P. Y. Ng, I. A. Powelson, J. L. Leighton. Angew. Chem., Int. Ed. 45, 3811 (2006). (http://dx.doi.org/10.1002/anie.200600910)
- 38a. R. , K. Oisaki, M. Kanai, M. Shibasaki. J. Am. Chem. Soc. 126, 8910 (2004). (http://dx.doi.org/10.1021/ja047200l)
- 38b. S. , P. N. Moquist, S. E. Schaus. J. Am. Chem. Soc. 128, 12660 (2006). (http://dx.doi.org/10.1021/ja0651308)
- 39. J. J. , M. S. Sigman. J. Am. Chem. Soc. 129, 2752 (2007). (http://dx.doi.org/10.1021/ja068915m)
- 40. Reviews on the stoichiometric use of In(0).
- 40a. B. C. . Eur. J. Org. Chem. 2347 (2000). (http://dx.doi.org/10.1002/1099-0690(200007)2000:13<2347::AID-EJOC2347>3.0.CO;2-X)
- 40b. V. , S. Ros, C. N. Jayan, B. S. Pillai. Tetrahedron 60, 1959 (2004). (http://dx.doi.org/10.1016/j.tet.2003.12.037)
- 41. Indium has been defined as a rare metal; thus, catalysis is important: J. Emsley (Ed.). The Elements, 3rd ed., Oxford Press, Oxford (1998).
- 42. Selected examples for allylindium reagents.
- 42a. T. H. , Y. Yang. J. Am. Chem. Soc. 121, 3228 (1999). (http://dx.doi.org/10.1021/ja984359n)
- 42b. J. G. , K. I. Choi, A. N. Pae, H. Y. Koh, Y. Kang, Y. S. Cho. J. Chem. Soc., Perkin Trans. 1 1314 (2002).
- 42c. G. , A. Lubineau, M.-C. Scherrmann. Org. Biomol. Chem. 3, 1375 (2005). (http://dx.doi.org/10.1039/b419231c)
- 43. Reformatsky-type reagents: S. A. , M. Yasuda, I. Shibata, A. Baba. Org. Lett. 6, 4475 (2004). (http://dx.doi.org/10.1021/ol0482846)
- 44. Selected examples for alkyl radical reagents: Account.
- 44a. H. , T. Naito. Org. Biomol. Chem. 2, 1267 (2004). (http://dx.doi.org/10.1039/b316787a)
- 44b. Z.-L. , T.-P. Loh. Org. Lett. 9, 5413 (2007). (http://dx.doi.org/10.1021/ol702263b)
- 45. U. , M. Ueno, S. Kobayashi. J. Am. Chem. Soc. 130, 13824 (2008). (http://dx.doi.org/10.1021/ja804182j)
- 46. In contrast, In(III) complexes are commonly used in catalytic quantities as Lewis acid catalysts: see ref. [28c].
- 47. Catalytic use of In(0) for the preparation of “allylgallium” from allyl bromide.
- 47a. K. , Y. Ikawa. Org. Lett. 4, 1727 (2002). (http://dx.doi.org/10.1021/ol025784v)
- 47b. K. , Y. Ikawa, K. Ishii, M. Kumanda. Chem. Lett. 172 (2002). (http://dx.doi.org/10.1246/cl.2002.172)
- 48a. U. , S. Kobayashi. Angew. Chem., Int. Ed. 46, 5909 (2007). (http://dx.doi.org/10.1002/anie.200700899)
- 48b. U. , I.-H. Chen, S. Kobayashi. Org. Lett. 10, 737 (2008). (http://dx.doi.org/10.1021/ol702756k)
- 48c. S. , H. Konishi, U. Schneider. Chem. Commun. 2313 (2008); application of our In(I) catalysis. (http://dx.doi.org/10.1039/b802153h)
- 48d. N. , A. Kipke, S. Sebelius, K. J. Szabó. J. Am. Chem. Soc. 129, 13723 (2007); review on low oxidation state In. (http://dx.doi.org/10.1021/ja074917a)
- 48e. J. A. J. , A. Downs. Chem. Rev. 107, 2 (2007) and refs. cited herein. (http://dx.doi.org/10.1021/cr068027+)
- 49. Optimized conditions: 1 (0.5 mmol), 2 (1.5 equiv), In(0) (3 mol %), H2O (1 m), 30 °C, 24 h. Gallium(0) as a catalyst proved to be much less effective (low yield); the use of allylsilanes did not give any reaction.
- 50. Single electron transfer (SET) might be facilitated by the low first ionization enthalpy of In (558.3 kj/mol): http://www.webelements.com.
- 51. Account on Lewis and Brønsted acid-catalyzed allylboration of carbonyl compounds: D. G. . Synlett 1644 (2007) and refs. cited herein. (http://dx.doi.org/10.1055/s-2007-980384)
